
Chapter 2

Determinants

2.1 Defining determinants

In the case of two-by-two matrices, we have seen that to each matrix there
is an associated number, which entirely determines whether or not a matrix
is invertible. We review this result:

Theorem 2.1. Let

A =

[
a b
c d

]
be a 2 × 2 matrix with real entries. Then A is invertible if and only if
ad− bc 6= 0. When A is invertible, the inverse of A is given by the formula

A−1 =

[
d

ad−bc
−b

ad−bc
−c

ad−bc
a

ad−bc

]
=

1

ad− bc

[
d −b
−c a

]
.

Proof. If ad− bc is nonzero, we may show that the given matrix is really A−1

(and hence that A is actually invertible) by multiplying them together.
Suppose then that A is invertible. We wish to show that ad − bc 6= 0.

Clearly either a or b must be nonzero, since we have seen that a matrix with
a row of zeros can not be invertible. We will deal with two cases:

1. Suppose that a 6= 0. We row reduce A as follows:[
a b
c d

]
R1→ 1

a
R1−→

[
1 b

a

c d

]
R2→R2−cR1−→

[
1 b

a

0 d− cb
a

]
If the entry d − cb

a
were equal to zero, then the matrix would be in

reduced row echelon form, and we would see that A is not invertible.
Since we are assuming that A is invertible, we see that this can not
happen, so that d− cb

a
6= 0, or in other words, ad− bc 6= 0.

7
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2. Suppose that a = 0. Then we know that b 6= 0. Note also that since
A is invertible, we know that c 6= 0 (since otherwise A would contain
a column of zeros, and would fail to be invertible). Then ad − bc =
0d− bc = −bc 6= 0.

We will now define a function det from the set of square matrices to the
set of real numbers such that a matrix A is invertible exactly when det(A) is
nonzero. The definition will take up the rest of this section, and determining
properties of det will be postponed until later.

2.1.1 Permutations

In order to define the determinant function, we will need to understand some
simple facts about permutations. We begin with some definitions and very
simple properties.

Definition 1. Let S = {1, . . . , n}. A permutation of S is a function σ :
S → S such that the following two properties hold:

1. If i ∈ S and j ∈ S are different, then σ(i) 6= σ(j).

2. If i ∈ S then i = σ(j) for some j ∈ S.

One way to write a permutation is just to list what σ(1), . . . , σ(n) are.
The result will be a rearrangement of the numbers from 1 through n, with
every number appearing at least once (by property 2 of Definition 1), and
no number appearing more than once (by property 1). For instance, for the
permutation of {1, 2, 3} with σ(1) = 2, σ(2) = 3 and σ(3) = 1, we might
talk about the permutation (2, 3, 1), or even just the permutation 231 (note
that this last way of writing things breaks down when n ≥ 10). When n
is small, we can easily list all permutations of {1, . . . , n}. For instance for
n = 3, there are 6 permutations:

(1, 2, 3), (1, 3, 2)

(2, 1, 3), (2, 3, 1)

(3, 1, 2), (3, 2, 1).

Definition 2. Sn is the set of all permutations of the numbers {1, . . . , n}.
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Definition 3. Let S = {1, . . . , n}, and let σ : S → S be a permutation. An
inversion in σ is a pair (σ(i), σ(j)) with i ∈ S, j ∈ S, and i < j, such that
σ(i) > σ(j).

If we write our permutation as a rearrangement, we can easily count the
number of inversions, by counting how often a larger number precedes a
smaller one. We count the number of inversions in several permutations:

n = 5 32451 5 inversions (3,2), (3,1), (2,1), (4,1), (5,1).
n = 5 13245 1 inversion: (3,2).
n = 5 54123 7 inversions: (5,4), (5,3), (5,2), (5,1), (4,3), (4,2), (4,1).
n = 4 4321 6 inversions: (4,3), (4,2), (4,1), (3,2), (3,1), (2,1).

Note how organizing the counting makes it easier to keep track of which
inversions have already been counted–we first count the number of inversions
beginning with σ(1) (the first number), then those beginning with σ(2), etc.

Definition 4. A permutation is called even if it contains an even number of
inversions. It is called odd if it contains an odd number of inversions. If σ is
a permutation, we will define sign(σ) by the following rule:

sign(σ) =

{
1 if σ is even,

−1 if σ is odd.

We are now prepared to define the determinant.

2.1.2 Definition of the determinant

Throughout this section, let A be an n×n matrix, and denote its (i, j) entry
by aij.

Definition 5. Let σ ∈ Sn. The elementary product associated to σ is the
product

a1σ(1)a2σ(2) · · · anσ(n).

The signed elementary product associated to σ is the product

sign(σ)a1σ(1)a2σ(2) · · · anσ(n).

Possibly the most important fact about elementary products of A is that
each elementary product contains exactly one element from every row of A,
and exactly one element from every column of A. This fact will play an
important role in many proofs of simple facts about determinants.
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Example 2.1.1. Let

A =

a b c
d e f
g h i


and let σ(1) = 3, σ(2) = 2, and σ(3) = 1. Then the elementary product
associated to σ is

a1σ(1)a2σ(2)a3σ(3) = a13a22a31 = ceg

and since σ is odd, the signed elementary product associated to σ is −ceg.

Definition 6. Let A be an n× n matrix. The determinant of A is the sum
of all the signed elementary products of A (as σ runs through all possible
permutations). In symbols,

det(A) =
∑

σ in Sn

sign(σ)a1σ(1) · · · anσ(n)

2.1.3 Two-by-two determinant

Let A be the matrix

A =

[
a b
c d

]
Then n = 2. There are only two permutations of {1, 2}, namely 12 and 21.
The permutation 12 is even and 21 is odd. We then obtain the formula

det(A) = a11a22 + (−1)a12a21 = ad− bc

2.1.4 Three-by-three determinants

Let A be the matrix

A =

a b c
d e f
g h i

 .

There are six permutations in Sn, giving the following signed elementary
products:

σ sign(σ) el. prod. signed el. prod.
123 1 a11a22a33 = aei aei
132 −1 a11a23a32 = afh −afh
213 −1 a12a21a33 = bdi −bdi
231 1 a12a23a31 = bfg bfg
312 1 a13a21a32 = cdh cdh
321 −1 a13a22a31 = ceg −ceg

We see that that

det(A) = aei− afh + bfg − bdi + cdh− ceg.
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2.1.5 Shortcuts for computing small determinants

The formula for a 2×2 determinant is short and easy to remember. The for-
mula for a 3×3 determinant is longer, involving six terms, each of which has
three variables. In order to remember this formula, the following technique
is useful. Write the matrix, and copy the first two columns to the right of
the matrix, as below. Examine the diagonals indicated, and for the diagonals
which go to the right, multiply the terms and add. For the diagonals which
go to the left, multiply the terms and subtract.

a

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE b

""EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
c

##GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG

{{wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
a

||yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy
b

||yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyy

d e f d e

g h i g h

−ceg −afh −bdi +aei +bfg +cdh

It is very important to note that similar rules do not hold for 4 × 4 or
larger matrices! You will get incorrect answers!

2.1.6 Larger Determinants

Note that there are n! = n(n−1)(n−2) · · · (2)(1) permutations in Sn. Hence,
to compute the determinant of a four-by-four matrix would require adding
together 4! = 24 elementary products, and to compute the determinant of
a 10 × 10 matrix would require adding together 10! = 3, 628, 800 elemen-
tary products. Clearly, the definition is not a convenient way to compute
large determinants! We will learn later how to compute determinant of large
matrices efficiently.

2.1.7 Upper triangular matrices

Theorem 2.2. Let A be an upper triangular matrix. Then det(A) is the
product of the diagonal entries of A.

Proof. Denote the (i, j) entry of A by aij, and note that if j < i then aij = 0
(this is just the definition of upper triangular). Let σ be a permutation, and
suppose that the elementary product

a1σ(1)a2σ(2) · · · anσ(n)
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is nonzero. Then each value aiσ(i) must be nonzero, so σ(i) ≥ i for every i from
1 to n. Since σ(n) ≥ n, we must have σ(n) = n. Then since σ(n−1) ≥ n−1,
σ(n− 1) must equal either n− 1 or n. Since σ(n) = n, σ(n− 1) cannot equal
n, so σ(n− 1) = n− 1. Similarly, σ(n− 2) = n− 2, and in general, σ(i) = i.
Hence, we see that the only permutation which yields a nonzero elementary
product is (1, 2, . . . , n). This is an even permutation, so when we add all the
signed elementary products together, we get

det(A) = a11a22 · · · ann

which is just the product of the diagonal entries.

2.1.8 Exercises

Exercise 2.1.1. Compute the following determinants:

1. det

((
4 5
3 2

))

2. det

1 2 3
4 5 6
7 8 0


Exercise 2.1.2. Prove that a matrix with a row of zeros has determinant
equal to zero.

Solution: Suppose that row i consists completely of zeros. every elemen-
tary product will contain a factor of the form ai,σ(i), which will be zero (since
it comes from row i). Hence, every elementary product will be zero, so the
sum of the signed elementary products will be zero. Thus, det(A) = 0.

Exercise 2.1.3. Prove that the determinant of a lower triangular matrix is
the product of the diagonal entries.

Exercise 2.1.4. Prove that if the entries of a matrix are all integers, then
the detrminant is also an integer.

Exercise 2.1.5. Prove that if the determinant of a matrix A is d, and B is
a matrix obtained from A by multiplying all the elements in one row by a
number k, then det(B) = k det(A).

Exercise 2.1.6. If A is an n× n matrix, prove that det(kA) = kn det(A).

Exercise 2.1.7. Compute the determinant of the following matrix:
1 0 0 0 2
2 0 0 0 3
1 0 0 0 4
1 2 3 4 5
2 1 3 1 1

 .
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Exercise 2.1.8. Let A and B be n × n matrices, such that A and B differ
only in the ith row. Let C be a matrix equal to both A and B in all rows
except for the ith row, with the entries in the ith row equal to the sum of
the corresponding entries in A and B. Prove that det(C) = det(A)+det(B).
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2.2 Cofactor Expansions

One way to think of elementary products is as products of entries of the
matrix, with exactly one from every row and exactly one from every column.
We will use this idea to write the determinant of an n × n matrix in terms
of smaller determinants, which will be easier to compute.

Definition 7. Let A be an n× n matrix. We define the (i, j) minor Mij of
A to be the determinant of the matrix obtained from A by deleting the ith
row and the jth column.

For instance, if

A =

1 2 3
4 5 6
7 8 9


the minors of A are

M11 = det
([

5 6
8 9

])
= −3, M12 = det

([
4 6
7 9

])
= −6, M13 = det

([
4 5
7 8

])
= −3

M21 = det
([

2 3
8 9

])
= −6, M22 = det

([
1 3
7 9

])
= −12, M23 = det

([
1 2
7 8

])
= −6

M31 = det
([

2 3
5 6

])
= −3, M32 = det

([
1 3
4 6

])
= −6, M33 = det

([
1 2
4 5

])
= −3

Definition 8. Let A be an n × n matrix. We define the (i, j) cofactor Cij

of A to be (−1)i+jMij.

For the matrix A above, we have the cofactors:

C11 = −3, C12 = 6, C13 = −3
C21 = 6, C22 = −12, C23 = 6
C31 = −3, C32 = 6, C33 = −3

Notice that if we take aij and multiply it by Cij, we will get a sum that
includes all the elementary products of A that include aij. This is easy to
see, because any such elementary product must be aij times an elementary
product of Mij. It is not quite so easy to see (and the proof will be delayed
until later–see Theorem 2.8) that to get the signs right on all these elementary
products, we need to multiply by (−1)i+j. We then get the following theorem:
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Theorem 2.3. Let A be an n×n matrix. Choose an integer i between 1 and
n. Then

det(A) =
n∑

j=1

aijCij =
n∑

j=1

(−1)i+jaijMij

Theorem 2.4. Let A be an n × n matrix. Choose an integer j between 1
and n. Then

det(A) =
n∑

i=1

aijCij =
n∑

i=1

(−1)i+jaijMij

Proof. The sums certainly include all the elementary products, and as men-
tioned above (and proven later in Theorem 2.8), they include them with the
correct signs. Hence, the sums are in fact equal to the determinant of A.

Definition 9. If we compute det(A) using Theorem 2.3, we say that we have
expanded the determinant on row i. Similarly, if we compute det(A) using
Theorem 2.4, we say that we have expanded the determinant on column j.

To keep track of the signs in the sums it is convenient to fill in a matrix
with a checkerboard pattern of pluses and minuses:

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...
. . .


and then the sign in front of aijMij is just the sign in the (i, j) position of
the matrix above.

Example 2.2.1. We compute the determinant of the matrix

A =

1 2 3
4 5 6
7 8 9


in several different ways. We first choose to expand the determinant on row
number 2. Then we have that

det(A) = (−1)(4) det

([
2 3
8 9

])
+ (1)(5) det

([
1 3
7 9

])
+ (−1)(6) det

([
1 2
7 8

])
= (−4)(−6) + 5(−12) + (−6)(−6)

= 24− 60 + 36

= 0



16 CHAPTER 2. DETERMINANTS

We may also choose to expand the determinant on column 3, obtaining

det(A) = (1)(3) det

([
4 5
7 8

])
+ (−1)(6) det

([
1 2
7 8

])
+ (1)(9) det

([
1 2
4 5

])
= (3)(−3) + (−6)(−6) + (9)(−3)

= −9 + 36− 27

= 0

One benefit of using cofactor expansions to compute determinants is that
we may often choose a row or column that has many zeros, thus reducing
the amount of work that we have to do.

Example 2.2.2. We compute the determinant of

A =


1 2 3 4 0
0 1 0 0 0
2 7 1 2 3
1 1 0 2 0
2 3 0 2 0


by expanding on the second row:

det(A) = 1 det




1 3 4 0
2 1 2 3
1 0 2 0
2 0 2 0




= (1)(3) det

1 3 4
1 0 2
2 0 2


= (1)(3)(−3) det

([
1 2
2 2

])
= (1)(3)(−3)(2− 4)

= 18.

We will now use cofactor expansion to prove a useful theorem about
determinants, which will then be used to compute inverse matrices.

Theorem 2.5. Let A be an n×n matrix, with two identical rows or columns.
Then det(A) = 0.

Proof. We prove this theorem for matrices with two identical rows by induc-
tion. First, we note that it is obviously true for 2× 2 matrices, since

det

([
a b
a b

])
= ab− ba = 0.
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Now we will assume that we have already proven the theorem for n × n
matrices, and we will prove it for (n + 1)× (n + 1) matrices.

Suppose that A is (n + 1)× (n + 1) and has two identical rows. Expand
the determinant along a row which is not one of the two identical rows. Each
minor will then be a determinant of an n × n submatrix, and each of these
submatrices will have two identical rows. Hence, by induction, each minor
in the expansion of the determinant will be zero, so the determinant will be
zero.

Definition 10. Let A be an n×n matrix. The adjoint of A, denoted adj(A)
is the n× n matrix whose (i, j) entry is Cji.

Note that if we compute all the cofactors, Cij and make a matrix whose (i, j)
entry is Cij, then the adjoint is just the transpose of this matrix.

The adjoint of A has the following special property.

Theorem 2.6. Let A be an n × n matrix. Then the product A adj(A) =
det(A)I.

Proof. The (i, j) entry of A adj(A) is the dot product of the ith row of A, or
(ai1, ai2, . . . , ain) with the jth column of adj(A), or

Cj1

Cj2
...

Cjn


This product is just

ai1Cj1 + · · ·+ ainCjn =
n∑

k=1

aikCjk.

Note that if i = j, then this is just the cofactor expansion of det(A) on the ith
row. If i 6= j, however, then we can see that this is the cofactor expansion (on
the jth row) of the determinant of a different matrix Bij, which is obtained
by replacing the jth row of A with the ith row. Since Bij has two identical
rows, det(Bij) = 0. Hence, we have that A adj(A) = det(A)I.

Theorem 2.7. Let A be an n×n matrix. Then if det(A) 6= 0, A is invertible,
and A−1 = 1

det(A)
adj(A).

Proof. This follows immediately from Theorem 2.6.

Note that it is also true, and will be proved later, that if A is invertible,
then det(A) 6= 0.
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2.2.1 Elementary products and cofactors–getting the
signs right

In this subsection, we do a rather subtle bit of work to show that the signs
on the elementary products in the cofactor expansion are the same as the
signs on the signed elementary products in the definition of the determinant.
This proof is more involved than most of the rest of the book, so we put it
in this optional subsection.

Theorem 2.8. Let A be an n× n matrix, and let Aij be the (n− 1)× (n−
1) submatrix obtained by deleting the ith row and jth column. The signed
elementary products arising in the product

(−1)i+jaij det(Aij)

all have the same sign as they do in the definition of det(A).

Proof. We begin by choosing a row i and a column j of A. Deleting this row
and column leaves an (n− 1)× (n− 1) matrix Aij. Let σ ∈ Sn−1, so that σ
defines an elementary product of Aij. We define a representation τ ∈ Sn by

τ(k) =


σ(k) if k < i and σ(k) < j

σ(k + 1) if k > i and σ(k + 1) < j

σ(k) + 1 if k < i and σ(k) > j

σ(k + 1) + 1 if k > i and σ(k) > i.

Note that although the definition of τ looks quite complicated, it is really
just a permutation in Sn, which gives the elementary product of A resulting
from multiplying aij by the elementary product of Aij coming from σ. Note
that every inversion of σ will be an inversion of τ , and that every inversion
of τ not involving j will correspond to an inversion of σ. So, to compare the
signs of σ and τ , we just need to count how many inversions of τ involve j.

Note that there are n− j elements of {1, . . . , n} larger than j, and there
are i − 1 spots where they could be put before j. Let k be the number of
elements greater than j which come before j in the permutation θ. Then
n− j−k elements greater than j follow j, but there are n− i spots following
j, so (n− i)− (n− j−k) elements smaller than j must follow j. Hence θ has

k + (n− i)− (n− j − k) = j − i + 2k = i + j + 2(k − i)

inversions more than τ does. Hence, when we multiply aij together with a
signed elementary product of Aij, we need to multiply by a factor of

(−1)i+j+2(k−i) = (−1)i+j

to get a signed elementary product of A. This is exactly the factor indicated.
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2.2.2 Cramer’s rule

The use of the adjoint matrix, and the definition of the determinant combine
to give an interesting method for solving systems of linear equations with
square, invertible coefficient matrices. We begin with a definition and a
lemma.

Definition 11. Let A be an n × n matrix and b and n × 1 column vector.
Define Ai(b) to be the n × n matrix which is identical to A except that its
ith column is equal to b.

Lemma 2.9. Let A be an n×n matrix and b be a n×1 column vector. Then
the ith entry of adj(A)b is equal to det(Ai(b)).

Proof. The ith entry of adj(A)b is the dot product of the ith row of adj(A)
with b. The entries in the ith row of adj(A) are the cofactors Cji of A. Hence,
the ith entry of adj(A)b equals

n∑
j=1

bjCji,

where we denote the jth entry of b by bj.
Expanding det(Ai(b)) on the ith column yields the same sum.

Theorem 2.10 (Cramer’s rule). Let A be an n× n invertible matrix, and b
an n× 1 column vector. Then the system of equations Ax = b has a unique
solution, whose ith coordinate xi is given by

xi =
det(Ai(b))

det(A)
.

Proof. We know that A−1 = 1
det(A)

adj(A), and that det(A) 6= 0. Hence,

multiplying each side of Ax = b on the right by A−1 we see that

x =
1

det(A)
adj(A)b.

By Lemma 2.9, we see that

xi =
1

det(A)
det(Ai(b)) =

det(Ai(b))

det(A)
.
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Example 2.2.3. We solve the system of equations:

2x + 3y + 4z = 5

3x + 2y + 5z = 6

2x + 2y + 3z = 1

(2.1)

using Cramer’s rule. Let

A =

2 3 4
3 2 5
2 2 3

 , and b =

5
6
1

 .

Then we have

A1(b) =

5 3 4
6 2 5
1 2 3

 , A2(b) =

2 5 4
3 6 5
2 1 3

 , A3(b) =

2 3 5
3 2 6
2 2 1

 ,

Computing determinants yields:

det(A) = 2 · 2 · 3 + 3 · 5 · 2 + 4 · 3 · 2− 4 · 2 · 2− 3 · 3 · 3− 2 · 5 · 2 = 3

det(A1(b)) = 5 · 2 · 3 + 3 · 5 · 1 + 4 · 6 · 2− 4 · 2 · 1− 3 · 6 · 3− 5 · 5 · 2 = −19

det(A2(b)) = 2 · 6 · 3 + 5 · 5 · 2 + 4 · 3 · 1− 4 · 6 · 2− 5 · 3 · 3− 2 · 5 · 1 = −5

det(A3(b)) = 2 · 2 · 1 + 3 · 6 · 2 + 5 · 3 · 2− 5 · 2 · 2− 3 · 3 · 1− 2 · 6 · 2 = 17

Hence, we see that

x = det(A1(b))/ det(A) = −19/3,

y = det(A2(b))/ det(A) = −5/3,

and
z = det(A3(b))/ det(A) = 17/3.

2.2.3 Exercises

Exercise 2.2.1. Compute the following determinant:

det


0 2 3 4 5
2 0 0 1 0
0 0 3 4 2
1 0 4 2 1
0 1 0 0 2


Exercise 2.2.2. Prove that if A is an n×n matrix with a row of zeros, then
adj(A) has n− 1 rows of zeros.

Exercise 2.2.3. Prove that if A is an n × n invertible matrix, then adj(A)
is also invertible.

Exercise 2.2.4. Show that if A is a nonzero singular n × n matrix, then
adj(A) is also singular.
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2.3 Row operations and determinants

In this section, we will derive a new technique for computing determinants
which works quite efficiently. The basic idea behind the technique is to use
row operations to put a matrix into a form in which the determinant is easily
calculated, keeping track of the row operations used, and how they affect the
determinant, we can backtrack, and determine what the original determinant
was.

Theorem 2.11. Let A be an n× n matrix. Then

1. if B is obtained from A by multiplying one row or column by k, then
det(B) = k det(A);

2. if B is obtained from A by swapping two rows, then det(B) = − det(A).

3. if B is obtained from A by adding a multiple of one row to another row,
then det(B) = det(A).

Proof. We note that we have already proved part 1 of the theorem in Ex-
ercise 2.1.5. We will prove the remaining parts by induction on the size of
A.

To begin suppose that A is a 2× 2 matrix, say

A =

[
a b
c d

]
.

Letting B be the matrix which results from swapping the two rows, we have
that

B =

[
c d
a b

]
and − det(A) = −(ad− bc) = cb− da = det(B). A similar argument proves
that swapping two columns changes the sign of the determinant.

Now, letting B be obtained by adding k times row 1 to row 2, we have
that

B =

[
a b

c + ka d + kb

]
,

and we see that

det(B) = a(d + kb)− b(c + ka) = ad + kab− bc− kab = ad− bc = det(A).

A similar argument works for adding a multiple of row two to row one, or
adding a multiple of one column to another.

Having proved the theorem for 2× 2 matrices, we proceed by induction.
Assume the theorem is true for all matrices smaller than n×n, and let A be
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an n×n matrix. Let B be a matrix obtained from A by swapping two rows.
Expanding det(B) on a row that is not one of the two that were swapped,
we find that each minor that we compute is the same as the corresponding
minor of A, with two rows swapped. Hence, each cofactor used in calculating
det(B) has the opposite sign from the cofactor used in determining det(A).
Factoring these sign changes out, we see that det(B) = − det(A).

Similarly, if B is obtained by adding a multiple of one row to another, we
expand the determinant on a third row, not involved in the row operation.
We find, then that each minor of B is obtained from the corresponding minor
of A by adding a multiple of one row to another. Hence, each cofactor used to
calculate det(B) is the same as the corresponding cofactor used to calculate
det(A). It follows that det(B) = det(A).

A similar argument holds for a matrix B obtained from A by a column
operation.

We note the important fact that row operations can only multiply a de-
terminant by a nonzero number, so that they can never change whether or
not a determinant is zero. This leads immediately to the following theorem.

Theorem 2.12. Let A be an n×n matrix. If A is invertible, then det(A) 6= 0.

Proof. Let A be an invertible matrix. We have seen that since A is invertible,
its reduced row echelon form is equal to the identity. The identity is upper
triangular, and so has determinant equal to 1 (the product of its diagonal
entries. Since row operations can be used to change A into a matrix with
nonzero determinant, and row operations cannot change a zero determinant
into a nonzero one, we see that det(A) must have been nonzero.

For completeness, we combine Theorems 2.7 and 2.12

Theorem 2.13. An n× n matrix A is invertible if and only if det(A) 6= 0.

Proof. This follows immediately from Theorems 2.7 and 2.12.

2.3.1 Calculating determinants using row operations

We now give a procedure to calculate determinants using row operations.
Let A be an n×n matrix. We perform row operations on A to reduce it to

upper triangular form. For each row operation, we write down the following
information:

1. If we swap two rows, we write down a −1.

2. If we multiply a row by a nonzero constant k, we write down k.
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3. If we add a multiple of one row to another, we write down a 1.

After performing row operations on A, we will obtain a new matrix B, which
will be upper triangular. We can easily calculate the determinant of B. Let
C be the product of all the numbers that we wrote down while performing
row operations. Then, det(A)C = det(B), so that

det(A) =
det(B)

C
.

We illustrate with an example.

Example 2.3.1. Calculate the determinant of the matrix

A =

2 4 6
2 3 1
2 4 3


.

We perform the following row operations, writing down the appropriate
numbers in the column on the right:2 4 6

2 4 3
2 3 1

 R1→ 1
2
R1

−→

1 2 3
2 4 3
2 3 1

 1
2

R2=R2+(−2)R1−→

1 2 3
0 0 −3
2 3 1

 1

R3=R3+(−2)R1−→

1 2 3
0 0 −3
0 −1 −5

 1

R2↔R3−→

1 2 3
0 −1 −5
0 0 −3

 −1

The matrix that we end up with has determinant (1)(−1)(−3) = 3, and
the numbers that we wrote down to the right have product (1

2
)(1)(1)(−1) =

−1
2
, so we see that det(A) = 3/(−1

2
) = −6.

2.3.2 Determinants of elementary matrices

If E is an elementary matrix, then it is obtained from the identity matrix
by performing a single row operation. Since we know the determinant of
I, and we know how row operations affect the determinant, we know the
determinant of E.



24 CHAPTER 2. DETERMINANTS

Theorem 2.14. Let E be an n× n elementary matrix.

1. If E is obtained by multiplying a row of I by k, then det(E) = k.

2. If E is obtained by swapping two rows of I, then det(E) = −1.

3. If E is obtained by adding a multiple of one row to another row, then
det(E) = 1.

Proof. This follows immediately from Theorem 2.11.
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2.4 Determinants, matrix multiplication, and

transposes

Lemma 2.15. If E is an n × n elementary matrix, and B is any n × n
matrix, then det(EB) = det(E) det(B).

Proof. This follows from Theorem 2.14, since multiplying E by B performs
the row operation corresponding to E on B, and performing that row opera-
tion multiplies the determinant of B by det(E).

Lemma 2.16. If E1, . . . , Ek are n × n elementary matrices, and B is an
n× n matrix, then

det(Ek . . . E1B) = det(Ek) · · · det(E1) det(B).

Proof. If k = 1 then this is just Lemma 2.15.

Suppose now that the theorem is true for fewer than k elementary matri-
ces. We note that

det(EkEk−1 · · ·E1B) = det(Ek(Ek−1 · · ·E1B))

= det(Ek) det(Ek−1 · · ·E1B)

= det(Ek) det(Ek−1) · · · det(E1) det(B),

exactly as desired. Hence, the theorem is true for k elementary matrices. By
induction, then, the theorem is true.

Theorem 2.17. Let A and B be n × n matrices. Then det(AB) =
det(A) det(B).

Proof. Suppose that det(A) = 0. Then A is not invertible. If AB were
invertible, so that for some matrix C, (AB)C = I, then A(BC) = I, and
A would be invertible. Hence, we see that AB is not invertible, so that by
Theorem 2.13,

det(AB) = 0 = 0 det(B) = det(A) det(B).

We now suppose that det(A) 6= 0. Then A is invertible by Theorem 2.13,
and hence A is a product of elementary matrices, say A = E1E2 . . . Ek.
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Hence, by Lemma 2.16, we see that

det(AB) = det(E1 · · ·EkB)

= det(E1) · · · det(Ek) det(B)

= det(E1 · · ·Ek) det(B)

= det(A) det(B)

2.4.1 The determinant of the inverse

Corollary 2.18. If A is an n × n invertible matrix, then det(A−1) =
1/ det(A).

Proof. Since AA−1 = I,

1 = det(I) = det(AA−1) = det(A) det(A−1),

so det(A−1) = 1/ det(A).

2.4.2 The determinant of a transpose

Theorem 2.19. Let A be a square matrix. Then det(A) = det(AT ).

Proof. We proceed by induction. The theorem is easily seen to be true if A
is a 2 × 2 matrix. Assume that the theorem is true for all matrices smaller
than n× n, and we will prove that the theorem is true for n× n matrices.

Let B = AT . Denote the (i, j) entries of A and B by aij and bij, re-
spectively, and denote the matrices obtained by deleting the ith row and jth
column of A and B by Aij and Bij. Then we see easily that aij = bji and
AT

ij = Bji. Since Aij is smaller than A, we know that det(Aij) = det(AT
ij =

det(Bji).
Expanding the determinant of A on row 1 and the determinant of B on

column 1, we then obtain

det(A) =
n∑

k=1

a1k(−1)1+k det(A1k)

=
n∑

k=1

bk1(−1)1+k det(Bk1)

= det(B)
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2.4.3 The characteristic polynomial

We now define a special polynomial which will be important in our future
study of matrices.

Definition 12. Let A be an n × n matrix, and let x be a variable. The
characteristic polynomial of A is the polynomial

det(xI − A).

Example 2.4.1. Let

A =

[
1 2
3 4

]
The characteristic polynomial of A is

det

([
x 0
0 x

]
−

[
1 2
3 4

])
= det

([
x− 1 −2
−3 x− 4

])
= (x− 1)(x− 4)− (−2)(−3)

= x2 − 5x− 2

Note that we can use any technique available to evaluate the determinant
used to compute the characteristic polynomial.

Example 2.4.2. Let

A =

1 2 3
1 1 2
1 1 1

 .

We may compute the characteristic polynomial using the formula derived for
3× 3 determinants:

xI − A =

x− 1 −2 −3
−1 x− 1 −2
−1 −1 x− 1


so

det(xI − A) = (x− 1)3 + (−2)(−2)(−1) + (−3)(−1)(−1)

− (−3)(x− 1)(−1)− (−2)(−1)(x− 1)− (x− 1)(−2)(−1)

= (x3 − 3x2 + 3x− 1)− 4− 3− 7(x− 1)

= x3 − 3x2 − 4x− 1.

Alternatively, we write down xI − A and perform row operations
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−1 x− 1 −2
−1 −1 x− 1

 R3↔R1a−→

 −1 −1 x− 1
−1 x− 1 −2

x− 1 −2 −3

 −1

R2=R2−R1−→

 −1 −1 x− 1
0 x −1− x

x− 1 −2 −3

 1

R3=R3+(x−1)R1−→

−1 −1 x− 1
0 x −1− x
0 −1− x −3 + (x− 1)2

 1

R3=R3+R2−→

−1 −1 x− 1
0 x −1− x
0 −1 x2 − 3x− 3

 1

R3↔R2−→

−1 −1 x− 1
0 −1 x2 − 3x− 3
0 x −1− x

 −1

R3=R3+xR2−→

−1 −1 x− 1
0 −1 x2 − 3x− 3
0 0 x3 − 3x2 − 4x− 1

 1

Now the final matrix has determinant x3− 3x2− 4x− 1, and we divide it by
(1)(−1)(1)(1)(1)(−1) = 1 to find that det(xI − A) = x3 − 3x2 − 4x− 1.

Definition 13. A real number λ is an eigenvalue of a matrix A if the equation

Ax = λx

has nontrivial solutions. A nontrivial solution to this equation is called an
eigenvector of A with eigenvalue λ.

Theorem 2.20. The real number λ is an eigenvalue of A if and only if
det(λI − A) = 0

Proof. The equation

Ax = λx

or

Ax = λIx
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is the same as the equation

(λI − A)x = 0.

Hence, there is a nontrivial solution (so that λ is an eigenvalue) exactly when
λI − A is singular, or in other words, exactly when det(λI − A) = 0.

Corollary 2.21. The eigenvalues of A are exactly the roots of the charac-
teristic polynomial of A.

2.4.4 Exercises

Exercise 2.4.1. Suppose that A is an n× n invertible matrix. What is the
determinant of adj(A)?

Exercise 2.4.2. Prove by induction that det(Ak) = det(A)k. (Take care to
prove the theorem for both positive and negative values of k.)

Exercise 2.4.3. An orthogonal matrix is a matrix such that AT = A−1. If
A is an orthogonal matrix, determine the possible values of det(A). (Hint:
there are only two possible values.)

Exercise 2.4.4. Prove or give a counterexample: If A and B are n × n
matrices, then det(A + B) = det(A) + det(B).

Exercise 2.4.5. Prove that if A is a 2× 2 matrix, then det(A) = det(AT ).

Exercise 2.4.6. Prove that A and AT have the same eigenvalues.

Exercise 2.4.7. Show that the eigenvalues of an upper triangular matrix A
are the diagonal elements of A.




