
Math 313 Midterm I KEY 
Spring 2010 
section 001 

Instructor: Scott Glasgow 
 

Do NOT write on this problem statement booklet, except for your 
indication of following the honor code just below. No credit will be 
given for work written on this booklet. Rather write in a blue book. 
Also write your name, course, and section number on the blue book. 
 
Complete only that number of questions that gives you just over 150 

points—other problems you attempt after that total will not be 
graded.  

 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
1) What’s the difference between Gauss-Jordan elimination and Gaussian 

elimination? Which, in general, is quicker for large systems solved by a 
computer? (This is as opposed to small systems solved by people by hand.) 

 
5pts 
 
Solution 
 
In Gauss-Jordan elimination we row reduce the augmented matrix for a linear system of 
equations (or perhaps not augmented if the system is homogeneous since “zeros don’t 
change under row reduction”—i.e. linear combinations and permutations of zeros remain 
zeros) until it is in reduced row-echelon form, in which case both pivot and free variables 
and “final” right-hand sides (zero or not) are entirely obvious. On the other hand, in 
Gaussian elimination we only reduce the augmented matrix until it is in row-echelon 
form. Here pivot variables are obvious—and the same as in Gauss-Jordan elimination—
but the free variables may not yet be obvious, nor the final right hand sides. So then we 
must continue to (effectively) find the latter through “back-substitution”, which involves 
solving for earlier/more-left pivot variables in terms of later/more-right variables (pivot 
or not). Despite the more wordy description, the latter elimination is actually faster in 
general—it requires only about 2 / 3 rd’s as many operations for large (generally-
structured) matrices. (So Gauss-Jordan elimination is 50% slower—i.e. it requires half 
again as much time—as Gaussian elimination for large general matrices). 

 
2) When (i.e. under what circumstances) can we add matrices? How do we add 

matrices? When are two matrices “equal”? When can we multiply matrices? How 
do we multiply them? When can we multiply a scalar and a matrix? How do we 
multiply them? When can we take the transpose of a matrix? How do we take the 
transpose of a matrix? When can we take the trace of a matrix? How do we take 
the trace of a matrix? When can we take the determinant of a matrix? What is the 
definition of the determinant of a matrix? (The last question may require a 
paragraph, or one nice formula in which you explain the meaning of each term.)  

 
 
7pts 
 
Solution  
 



We can add two matrices together if and only if the matrices have exactly the same size, 
i.e. if the two matrices have exactly the same number of rows and columns. In such case 
we simply add corresponding entries. Two matrices are “equal” iff they are the same size 
and the corresponding entries are all equal. We can multiply two matrices iff the matrix 
on the left of the product has as many columns as the matrix on the right of the product 
has rows. The formula for multiplying an m r matrix A into (i.e. from the left into) an 
r n matrix B is 
 

  
1

.
r

ik kjij
k

AB A B


   (1) 

 
We can always multiply a scalar into a matrix. We do so by multiplying the scalar into 
each entry of the matrix. We can always take the transpose of a matrix, and do so by 
exchanging rows for columns, in order. We only take the trace of square matrices, in 
which case we add up the entries on the main diagonal. We only take the determinant of 
square matrices. The definition of determinant is the sum of all of the signed elementary 
products of the square matrix. An elementary product is a product of entries from a 
matrix in which one and only one (linear) factor is taken from each row and column. The 
sign of this product is determined by the number of, say, “column inversions” necessary 
to produce this combination of factors by permuting the column labels from the “main 
diagonal” elementary product; the sign is plus if the number of inversions is even, minus 
otherwise. In this setting, inversions are defined by a column label of one of these factors 
being bigger than a column label of a subsequent factor, the row labels of factors 
proceeding in order from smallest to largest (as factors are written from left to right).     
 

3) True or False: the product TA A is always well-defined (for any size matrix A ). 
Justify you answer. 

 
5pts 
 
Solution  
 

True: the number of columns of the matrix on the left will always be the same as the 
number of rows of the matrix on the right. 
 
 
4) True or False: The product of a singular matrix and an invertible matrix (of the 

same size) may sometimes by invertible. Justify your answer by stating a theorem 
or giving a (positive) example of the claimed phenomenon. 

 
7pts 
 
Solution  
 
False. The theorem is that the product of (square) matrices (of the same size) is invertible 
iff each matrix factor is invertible. To see the relevant direction we need for this 



particular question (which the student is not required to produce), suppose B is singular 
in the product AB . Then the equation 

 
 B x 0  (2) 
 
has more than just the trivial solution x 0 . But for such a nonzero solution x  of (2) we 
also get 
 
    A A B AB  0 0 x x , (3) 

 
i.e. the equation  AB x 0 has a nontrivial solution x and, so, by equivalent statements, 

AB is singular. (Here we used the associative property of matrix multiplication.) 
Similarly, suppose A is singular in the product AB . Then by previous theorem we know 

that TA is singular (by that theorem, if TA were invertible, then so would be  TTA A ). 

Thus the equation 
 
 TA x 0  (4) 
 
must have a nontrivial solution, as also then the equation 
 

  T TB A x 0  (5) 

 
(where we again used the associative property), so that by equivalent statements 

 TT TB A AB is singular, hence AB itself is singular.  

 
 

5) Put the following matrix in reduced row-echelon form 
 

 

1 1 1 1

1 1 1 1

4 2 1 4

 
   
  

 (6) 

 
10pts 
 
Solution  
 
The row reduction may proceed as follows: 
  



 

2 1 2/( 2)
3 2 2

3 4 1 3/( 3)

1 3 1 2

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 2 0 2 0 1 0 1

4 2 1 4 0 6 3 0 0 2 1 0

1 1 1 1 1 1 0 3 1 0 0 2

0 1 0 1 0 1 0 1 0 1 0 1 .

0 0 1 2 0 0 1 2 0 0 1 2

R R R
R R

R R R

R R R R

 


 

 

     
             
            

     
     
     
            

 

  

 (7) 

 
However the row reduction proceeds, the row echelon form is unique—the last matrix 
indicated in (7) is the answer.  
 
 

6) Solve the following system of 2 equations and 2 unknowns by performing Gauss-
Jordon elimination on the relevant augmented matrix. 

 

 
3,

2 5.

x y

x y

 
 

 (8) 

7pts 
 
Solution  
 
The augmented matrix and its row reduction appear below: 
 

 
2 1 1 21 1 3 1 1 3 1 0 1

1 2 5 0 1 2 0 1 2

R R R R      
     
     

  . (9) 

 
Thus the solution to (8) is    , 1, 2x y  . 

 
7) Under what circumstances can a square matrix be written as a product of a finite 

number of elementary matrices? 
 
5pts 
 
Solution  
 
By equivalent statements, this representation occurs iff the matrix is invertible, and, so, 
iff any one of the other equivalent statements. 
 

8) Write the matrix  
 

 
1 1

1 2
A

 
  
 

 (10) 



as a product of 2 elementary matrices. 
 
7pts 
 
Solution  
  
In a previous problem we noted that the matrix is reduced to the identity matrix by 2 
elementary row operations. Applying the inverses of these row operations to the relevant 
version of the identity, and forming the product of such in the opposite order in which 
they were applied to the matrix, we get the desired product: since from (9) we have 
 

 
2 1 1 21 1 1 1 1 0

,
1 2 0 1 0 1

R R R R

A I
      

      
     

   (11) 

 
i.e., in what we hope is compelling notation,  
 
      1 2 2 1R R R R A I   , (12) 

 
then clearly 
 

 

             

   

theorem1 1 1 1

2 1 1 2 2 1 1 2

2 1 1 2

1 0 1 0 1 0 1 1
.

0 1 0 1 1 1 0 1

A R R R R I R R I R R I

R R R R

        

          
             

          

 (13) 

 
Here the indicated theorem may itself not be clear—it requires a proof with 3 parts to it—
but the rest should be clear. One (partially) checks (this theorem) by noting that in fact  
 

 
1 0 1 1 1 1

1 1 0 1 1 2
A

     
      

     
. (14) 

 
 

9) Find the inverse of the matrix A of the previous problem by either row-reducing a 
certain relevant augmented matrix, or by using the results of the previous problem 
itself in an insightful way. Do not use “the formula”, i.e. do not use the adjoint 
formula for an inverse. 

 
8pts 
 
Solution 
 

The augmented matrix to be reduced is A I   , which reduces to 1I A  when the matrix 

has an inverse—the matrix in this problem certainly does. The actual proof of this fact is 



more along the lines of “using the results of the previous problem in an insightful way”: 
from that problem and relevant theorems we certainly have 
 

 

                 
   

1 1 11 1 1 11
2 1 1 2 1 2 2 1

1 2 2 1

1 0 1 0 1 1 1 0

0 1 0 1 0 1 1 1

2 1
.

1 1

A R R I R R I R R I R R I

R R R R

           

           
                       

 
   

 (15) 

 
Either way one checks that 
 

 
2 1 1 1 1 0 1 1 2 1

1 1 1 2 0 1 1 2 1 1

          
                    

. (16) 

 
 

10) Find all b ’s such that A x b has a solution x , where A is the singular matrix 
 
 

 

1 2 3

4 5 6 .

7 8 9

A

 
   
  

 (17) 

 
You may do this in the “straightforward way”, or you might consider using the 
following (as yet unproved) theorem, which is usually easier: A x b has a solution 
x iff 0T v b (here 0 is actually the 1 1  matrix  0 ) for every v satisfying TA v 0 . 

 
8pts 
 
Solution 
 
Solutions v of TA v 0 are gotten by the following row reduction: 
 

 

2 1 3 2

3 1 2 1 2

2 2
3 / 3 4

1 4 7 1 4 7 1 4 7 1 0 1

2 5 8 0 3 6 0 1 2 0 1 2 .

3 6 9 0 6 12 0 0 0 0 0 0

R R R R
R R R R R

TA

 
  

       
                    
               

    (18) 

 
So all such v ’s are of the form 
 



 

1

2 .

1

t

 
   
  

v  (19) 

 
Thus the indicated requirement is that for a right-hand side of the form  1 2 3, ,T b b bb we 

must have (and this is sufficient) 
 

      
1

2 1 2 3

3

0 1 2 1 2T

b

t b t b b b

b

 
       
  

v b  (20) 

 
for every t . Thus the necessary and sufficient condition is that the right-hand side b is of 
the form 

 
1 1

2 2 1 2

3 1 2

1 0

0 1 ,

2 1 2

b b

b b b b

b b b

       
                 
                

b  (21) 

 
where 1b and 2b are arbitrary. 

 
 

11) Find the determinant of 
 

 

1 2 3

4 5 6

7 8 10

 
 
 
  

 (22) 

 
by cofactor expansion off of the last column at every step, including the second step 
(and without using row reduction).  
 
8pts 
 
Solution 
 



 
         
    

         
 

1 2 3
4 5 1 2 1 2

det 4 5 6 3det 6det 10det
7 8 7 8 4 5

7 8 10

3 5det 7 8det 4 6 2det 7 8det 1

10 2det 4 5det 1

3 35 32 6 14 8 10 8 5 3 3 6 6

10 3

9 36 30 3.

 
                        

     

  

            

 

     

 (23) 

  
 

12) Fill in the blank for square matrix A : 
 
  adj      .A A   (24) 

 
5pts 
 
Solution 
 
    adj detA A A I . (25) 

 
 

13) Show that if a system of linear equations 
 
 A x b  (26) 
 

has 2 (distinct) solutions x then it also has infinitely many (distinct) solutions. 
(Do not assume the theorem that a linear system has only 0, 1, or infinitely many 
solutions. Rather use matrix algebra to show this must be the case.)  

 
10pts 
 
Solution 
 
If 1x and 2 1x x both solve (26), then for each t , of which there are infinitely many, 

we get (using matrix algebra) that a simple interpolation “between” these solutions gives 
 
          1 2 1 21 1 1 1 1A t t t A tA t t t t            x x x x b b b b b , (27) 

 
i.e. there are infinitely many distinct solution solutions of (26) (of the form 

   1 2 1 2 11 t t t     x x x x x x  ). Note that it is important that 2 1x x to get this result 



as otherwise     1 2 1 1 11 1 1t t t t      x x x x x only represents 1 solution, not 

infinitely many. 
  
 

14)  asdf 
a) List each disordered pair in the following permutations of (1,2,3,4,5) : 

 
i) (5,4,3,2,1)  
ii) (2,4,3,1,5) . 

 
7pts 
 

 
b) For each of the two permutations above find the associated signed elementary 
product (used in the construction of the determinant) of the matrix 
 

 

a b c d e

f g h i j

A k l m n o

p q r s t

u v w x y

 
 
 
 
 
 
  

. 

 
8pts 
 
Solution  
 
a) For i) there are 10 disordered pairs, which are (5,4) , (5,3) , (5,2) , (5,1) , (4,3) , (4, 2) , 
(4,1) , (3,2) , (3,1) , and (2,1) .  For ii) there are 4 disordered pairs, which are (2,1) , 
(4,3) , (4,1) , and (3,1) .   
 

b) The signed elementary products are then  10

15 24 33 42 511 1A A A A A eimqu eimqu    , 

and   4

12 24 33 41 551 1A A A A A bimpy bimpy    .  

 
 

15) True or False: Every homogeneous system of equations 
 
 A x 0  (28) 
 
with more unknowns than equations (hence A is a m n matrix with n m , x is a 

1n column matrix of unknowns, and 0 is a 1m column matrix of zeroes), has a non-
zero/nontrivial solution x . Justify your answer for the last 5 points of this problem. 
 



2+5=7 points 
 
Solution 
 
This is a true statement. The proof (which is not required here) is effectively that the row 

echelon form of A , which arises in row reducing the (trivially) augmented matrix A  0  

(hence arises in finding any and all solutions of (28)),  cannot have any more 
pivots/leading 1’s than either the number of rows or columns of A (since each pivot 
requires both a unique column and row to put it in). Hence this number of pivots is no 
more than the minimum of n  and m , which in this case is m . Thus the solution 

1nx x has no more than m n leading variables, hence has at least 1n m  free 

variables. Even one free variable represents/gives rise to an infinite number of distinct 
solutions (not all of which can be 1nx 0 then).   

 
 

16) True or False: Every homogeneous system of equations 
 
 A x 0  (29) 
 
with more unknowns than equations has infinitely many solutions. Justify your answer 
for the last 3 points of this problem. 
 
 
1+3=4 points 
 
Solution 
 
The statement is true, for the same reasons indicated in/for the previous problem. 
 
 

17) Suppose the system of equations  
 
 A x b  (30) 
 
has one and only one solution nx  for each and every nb  . (Evidently A is an 
n n matrix.) Now tell me whether the following statement is true or is false: “It is 
possible that the matrix A allows there to be an x 0 such that A x 0 ”, i.e. “It is possible 
that the homogeneous version of equation (30) has a nontrivial solution”. Prove your 
assertion. 
 
5 points 
 
Solution 
 



Without recourse to any “fancy theorems”, we have the following: A x 0 for 
x 0 certainly, and the hypotheses say that this is the only one. So the statement is false.   

 
 

18) Suppose the system of equations  
 
 A x b  (31) 
 
has a solution nx  for each and every nb  . (Evidently A is an n n matrix.) Tell me 
whether the following statement is true or is false: “It is possible that the matrix A allows 
there to be an x 0 such that A x 0 ”, i.e. “It is possible that the homogeneous version of 
equation (31) has a nontrivial solution”. Prove your assertion. 
 
10 points 
 
Solution 
 
With recourse to our “Equivalent Statements”, we have that A x 0 has only the trivial 
solution x 0 if and only if (31) has a solution nx  for every nb  . So the statement 
is false.  
 
Extra Pedagogy: Recall that the proof of this equivalence goes something like this: If 
(31) is consistent for every choice of nb  , then we can solve 
systems i iA x b , 1, ,i n  , with the ib ’s being the relevant columns of the identity 

matrix I . Then the matrix 1 i nC    x x x  certainly turns out to be a “right inverse” 

of A , which, by theorem 1.6.3, will also be “the inverse” of A , so that A x 0  has only 

the solution    1 1 1I A A A A A      x x x x 0 0 . [Note that theorem 1.6.3 could itself 

be proved there by showing that this right inverse is itself invertible: consider the 
systemC x 0 , which then has only the solution    I AC A C A    x x x x 0 0 , and 

which, according to equivalent statements, gives C invertible. Then using that, under this 
circumstance, 1 1AC I A C CA CC I       , which says (among other things) that 
C is also A ’s inverse.] This is enough of the equivalence to deduce that the statement is 
false.  
 
To get the other direction in this equivalence, and to illuminate how some of the other 
equivalent statements just used are indeed equivalent, recall the following: if A x 0 has 

only the trivial solution x 0 , then row reduction of A  0 must give I  0 in a finite 

number of steps. (This presumes that row reduction does not change the solution space, 
and that we, as indicated, “get done” in a finite number of steps. We have never really 
proved this!) So (in finite number of steps) row reduction of A must give I (ignoring the 
last columns of zeroes in the above augmented matrices), which shows (with theorem 
1.5.1) that the product of A with a finite number of elementary matrices is I , which then 
shows that  A can be expressed as a product of (the inverses of these) elementary 



matrices, and, so, is itself invertible, giving (finally!) that    1 1A A AA I   b b b b for 

every nb  , so that (31) has at least the solution 1Ax b for every b . Aside from row 
reduction preserving the solution space of a system of equations (and getting done in a 
finite number of steps), the other “big idea” that may be buried in here is the fact that 
elementary matrices, or, more to the point, elementary row operations, are “truly” 
invertible, i.e. that the left or right inverses of such are in fact also right and left inverses. 
This last statement formed in terms of elementary row operations is the following: not 
only is it the case that for every elementary row operation there is another one that will 
“undo” it “afterwards”, but that same “afterwards inverse” done “before” the given 
elementary row operation will itself be undone by the given elementary row operation. Of 
course this distinction of “before” and “after” is at the heart of what we mean by “right” 
and “left” inverses!   
 
Note then that at one very basic level, the truth of all of our equivalent statements comes 
down to row operations, specifically that a) they don’t alter the solution space of a system 
of equations, that b) only a finite number of them is required to put a matrix in (even) 
(reduced) row echelon form, and that c) they are all “before/after”= “left\right” invertible. 
Perhaps these 3 claims should be thoroughly investigated by the serious student. 
 

19) Suppose the system of equations 
 
 A x b  (32) 
 
has no solution nx  for some particular nb  . (Here A is an n n matrix.) Tell me 
whether the following statement is true or is false: “There is another right-hand-side 

nb  such that (32) has infinitely many solutions.” Prove your assertion.    
 
15 points 
 
Solution 
 
By (the contrapositive/negation of our stated) equivalent statements the supposition gives 
us that, for example, A x 0 has more than just one solution. (Here we have chosen the 
“otherb ” to be 0 . Mind you 0  really is another b since for b 0 (32) actually has a 
solution, namely x 0 , contrary to the supposition.)   But since the possibilities for the 
number of solutions of linear systems is only 0 , 1, or  , there must be an infinite 
number of solutions: the statement is true. 
 

20) Suppose the system of equations 
 
 A x b  (33) 
 
(33) has no solution nx  for some particular nb  . (Here A is an n n matrix.) 
Suppose also that A is not the zero matrix, i.e. not all of its entries are zero. Tell me 



whether the following statement is true or is false: “There is another nonzero right-hand-
side nb  such that (32) has infinitely many solutions.” Prove your assertion.    
 
20 points 
 
 
Solution 
 
By equivalent statements the supposition gives that there is a nonzero solution to A x 0 , 
call it 0x ( 0 ). Now pick an nx  , call it 1x , with zeroes in every entry/row except for 

the number 1placed in the row corresponding to a (favorite) nonzero column c of A . 
Then by the rules of matrix multiplication, 1A x c and for each t , of which there 

are infinitely many, we have 
 
  1 0 1 0 .A t A tA t      x x x x c 0 c 0  (34) 

 
So we see there is in fact a nonzero right-hand-side nb  —namely the nonzero column 
c of A —such that (33) has infinitely many (distinct) solutions: the statement is true. 
(Note it is important that 0 x 0 as otherwise 1 0tx x represents only 1 solution, not 

infinitely many, as t ranges over the reals.)  
         
 

21) Suppose the system of equations 
 
 A x b  (35) 
 
has infinitely many solutions nx  for some particular nb  . (Evidently A is an 
n n matrix.) Tell me whether the following statement is true or is false: “There is 
another right-hand-side nb  such that (35) has no solutions.” Prove your assertion. 
 
15 points 
 
Solution 
 
By equivalent statements the supposition gives us that there is a nb  for which (35) 
has no solution: the statement is true. 

 
22) Assuming A and B are invertible matrices of the same size, show that  

 

   1 1 1.AB B A
    (36) 

 
15 points 
 



Solution 
 

1 1B A   is the inverse of AB if and only if  
 

        1 1 1 1 ,AB B A B A AB I      (37) 

 
to whit we first note that, by the associative property of matrix multiplication,  
 

 

     

     

1 1 1 1

1 1 1 1

and

.

AB B A A BB A

B A AB B A A B

   

   





 (38) 

 
Then, by the definition of the inverses, in particular that an inverse is both a right and a 
left inverse, we have, respectively, that  
 

 

       

       

1 1 1 1 1

1 1 1 1 1

and

.

AB B A A BB A AI A

B A AB B A A B B I B

    

    

 

 

 (39) 

 
Using now the fact that the identity matrix is in fact the “multiplicative identity” from 
either side we get   
 

 

    

    

1 1 1 1

1 1 1 1

and

.

AB B A AI A AA

B A AB B I B B B

   

   

 

 

 (40) 

 
Finally we use again the definition of the inverses. In particular, using that an inverse is 
both a right and a left inverse, we have, respectively, that    
 

 

   

   

1 1 1

1 1 1

and

,

AB B A AA I

B A AB B B I

  

  

 

 

 (41) 

 
which is the required (37) 
 
 

23) By using the (permutation) definition of the determinant, prove that if square 
matrix B is the same as square matrix A , except that one of B ’s rows is a scalar 
multiple k of the corresponding row of A , then  



 
 det det .B k A  (42) 
 
10 points 
 
Solution 
 
Let it be the j th row of the matrix B that is the same as the scalar k multiplied by the j th 
row of the matrix A . Then, by definition of the determinant, and the relationship between 
the 2 rows (of matrix A and matrix B ), we have 
 

 

     

 

( ) ( )

1 (1) ( ) ( ) 1 (1) ( ) ( )
:[ ] [ ] :[ ] [ ]

( )

1 (1) ( ) ( )
:[ ] [ ]

det : 1 1

1 :  det .

d p d p

p jp j np n p jp j np n
p n n p n n

d p

p jp j np n
p n n

B b b b a ka a

k a a a k A

 



   

  

 



   

 
(43) 

 
24) Show that if a matrix A is invertible, the system A x b has one and only one 

solution x , namely 1Ax b . [Warning: there are two things to prove here, namely 
a) that if the system has a solution, then it can only be 1Ax b , and that b) 

1Ax b actually does solve the system. Here then you will have addressed the 
“one and only one” issues in reverse order: you may first show that a) there is at 
most one solution, and b) that there is in fact one solution (rather than none). In 
parts a) and b) you will use that 1A is A ’s left and right inverse, respectively.] 

 
15 points 
 
Solution 
 
If the system has a solution x , then, for any such x , we may certainly write 
 
 A x b  (44) 
 
without implicitly lying, and then, by left application of 1A to (44), as well as by the 
associative property of matrix multiplication, obtain that 
 

    1 1 1I A A A A A     x x x x b . (45) 

 
In (45) we also used that 1A is a left inverse of A , as well as the fact that the so-called 
identity matrix I is in fact a “multiplicative identity”. Here then we have just showed that 
if (44) has a solution, it’s got to be 1Ax b . Thus we have showed that (44) has at most 
one solution. But our demonstration does not yet preclude there being no solution. To 
preclude that possibility, we confirm that, for the only promising candidate, 
namely 1Ax b , we get 
 



    1 1 ,A A A AA I    x b b b b  (46) 

 
so that our candidate was successful. (Here we have used the associative property of 
matrix multiplication, the fact that 1A is a right inverse of A , as well as the fact that the 
so-called identity matrix I is in fact a “multiplicative identity”.) Thus we have showed 
that the system has one and only one solution, namely 1Ax b . 
 

 
25) Suppose B is a left inverse of square matrix A , i.e. suppose 

 
 BA I . (47) 
 
(And, so, I and B are the same size as A .) By considering solutions x  of the system 
 
 A x 0 , (48) 
 
and by use of equivalent statements (and use of the hypothesis (47) of course!), show that 
A must have an inverse 1A , i.e. it must have a left-right inverse (and, so, by essentially 
the results of the next problem, 1B A , or, equivalently, (47) ultimately implies 
AB I .) 
 
15 points 
 
Solution 
 
With hypothesis (47), one finds the one and only solution x of (48) is x 0 : 
x 0 certainly satisfies (48) and whenever (48) has a solution x one finds 

 
     .I BA B A B    x x x x 0 0  (49) 

 
So by equivalent statements, A is invertible, which means it has a left-right inverse. 
(Thus 1B A : 
 

    1 1 1 1.B BI B AA BA A IA A         (50) 

 
This is nearly the result of the next problem.) 
  
      

26) Assume that both the matrix B and the matrix C are inverses of the matrix A . 
Show that B and C are just two aliases for the same matrix, i.e. show that in 
fact B C . 

  
10 points 
 



 
Solution 
 
The descriptions of B and C demand that 
 
 .AB BA I AC CA     (51) 
 
Using the associative property of matrix multiplication in two different ways on the 
product BAC we get   
 

 

 

 
and

,

BAC B AC BI B

BAC BA C IC C

  

  

 (52) 

 
so that indeed  

 

B BAC C

B C

 



 (53) 

 
as claimed. Note that in (52) we also used that a) C is a right inverse of A , b) B is a left 
inverse of A , and that c) the identity matrix acts as both a right and left multiplicative 
identity. One can alternately approach this problem by considering the product CAB , but 
then by using that a) C is a left inverse of A , b) B is a right inverse of A , and again that 
c) the identity matrix acts as both a right and left multiplicative identity.   
 

27)  Find the inverse of the matrix 
 

 
a b

A
c d

 
  
 

 (54) 

 

by row reducing A I    to 1I A   . Assume the parameters , , ,  and a b c d do not take on 

any special values, nor have a special relationship among them—that is row reduce 
naively, without worrying about any divisions by “hidden zeros”. 
 
 
10 points 
 
Solution 
 
The naïve row reduction mentioned may proceed as follows: 
 



 

 

 

2 1 1 2

1/ 1/

1/

1

1 0 1 0

0 1 0

00

00

1 0 1
.

0 1

aR cR ad bc R bR

R a R a

R a

a b a b
A I

c d ad bc c a

ad ab ad bc d ba ad bc

c a ad bc c aad bc

d b
I A

c aad bc

  



   
           

    
        

           



 



 (55) 

 
 

28) When is it (precisely) that the product of two symmetric matrices is symmetric? 
Prove this. (Assume of course that the product of the two matrices makes sense, 
i.e. assume the two matrices are the same size.)  

 
10 points 
 
Solution 
 
The product AB of two matrices A and B is, by definition, “symmetric” if and only 

if  T
AB AB . On the other hand we have proved that  T T TAB B A , which, under the 

present circumstances, is the product BA . Thus, if the matrices A and B are symmetric, 
their product is symmetric if and only if AB BA , i.e. if and only if A and B commute. 
 
 


