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Math 313 Midterm II KEY 
Spring 2010 
section 001 

Instructor: Scott Glasgow 
 

Do NOT write on this problem statement booklet, except for your 
indication of following the honor code just below. No credit will be 
given for work written on this booklet. Rather write in a blue book. 
Also write your name, course, and section number on the blue book. 

 
Honor Code: After I have learned of the contents of this exam by any 
means, I will not disclose to anyone any of these contents by any 
means until after the exam has closed. Also, during the exam, I will 
not look at other students’ papers, and I will not allow mine to be 
looked at by others. 

 
Signature: 
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1) Find the standard matrix for the following linear operator on 3 : A rotation of 

180 counter clockwise about the z axis, followed by a rotation of 90 counter 
clockwise about the y axis, followed by a rotation of 270 counter clockwise 
about the x axis.  

 
15pts 
 
Solution 
 
By theorem we have that for this linear operator 3 3:T   ,  
 

        
1 0 0

ˆ ˆ ˆ 0 1 0

0 0 1

T T x T y T z T T T

      
                 

            

. (1) 

 

Now  ˆ 1,0,0
T

x  is sent to  ˆ 1,0,0
T

x   by the 180 counter clockwise rotation about 

the z axis, and the rotation of 90 counter clockwise about the y axis sends it to 

 ˆ 0,0,1
T

z  , and then the rotation of 270 counter clockwise about the x axis sends this 

to  ˆ 0,1,0
T

y  . Similarly,  ˆ 0,1,0
T

y  is changed to  ˆ 0, 1,0
T

y   by the 180 counter 

clockwise rotation about the z axis, and the latter is unchanged by a rotation about the 

y axis, which then goes to  ˆ 0,0,1
T

z  via a rotation of 270 counter clockwise about the 

x axis. Finally  ˆ 0,0,1
T

z  is unchanged by a rotation about its axis, which then is 

changed to  ˆ 1,0,0
T

x  by a rotation of 90 counter clockwise about the y axis, which 

then is fixed by a rotation by that axis. Thus, 

        
0 0 1

ˆ ˆ ˆ ˆˆ ˆ 1 0 0 .

0 1 0

T T x T y T z y z x

 
          
  

 (2) 

If these operations are composed in the opposite order, one would get the matrix 

 

0 1 0

ˆ ˆˆ 0 0 1 ,

1 0 0

z x y

 
        
  

 

which is incorrect. 
 
 

2) Determine whether multiplication by matrix A is one-to-one: 
 

a)  
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1 0

0 1

0 0

A

 
   
  

, (3) 

b)  

 
1 0 1

0 1 1
A

 
  
 

. (4) 

 
15pts 
 
Solution 
 
By theorem, multiplication by ( m n ) matrix A —i.e. “ AT ”—is one-to-one iff the only 

solution x to A x 0 is the solution x 0 , which we can find by row reduction. But since 
these matrices are already in reduced row echelon form, the (nature of) the solution space 

of A x 0 is already clear: the first system has only the solution   2
1 2,

T
x x  x 0  , 

while the second has solutions of the form 

      3
1 2 3, , , , 1,1, 1

T T T
x x x s s s s       x  , not all of which being zero. So the first 

is one-to-one, the second many-to-one. 
 
3) Indicate whether each of the following statements is (always) true or sometimes 

true or always false. Justify your answer by theorem, definition or 
counterexample. 

a) If T maps n into m and is linear, and if n m , then T is one-to-one. 
b) If T maps n into m and is linear, and if n m , then T is one-to-one. 
c) If T maps n into m and is linear, and if m n , then T is one-to-one. 

 
15pts 
 
Solution  
 

a) This is “usually true”, i.e. “sometimes true”. An example is multiplication by 
matrix A of the first part of problem1, giving a map from 2 into 3 . It is not 
always true: take for (an extreme) example the same size matrix of the first part of 
problem 1 but with all zero entries.  

b) This is never true, i.e. always false: Said T will have a matrix  T which has more 

columns than rows, so that the homogeneous system  T x 0 will have more 

unknowns than equation, which, theorem, always gives an infinitude of nontrivial 
solutions (since the row reduced form will have no more than m n pivot 
variables, leaving at least 1n m  free variables). Thus the pre-images x of 
image 0 are infinitely many, and the map is clearly many-to-one, “at least for 
image 0 .” (By linearity, more can be said.)  



4 
 

c) This is “usually true”, i.e. “sometimes true”. By equivalent statements, these 
examples are precisely those of multiplication by an invertible square matrix A . 
Since not all square matrices are invertible, the statement is not always true: take 
for an extreme example a square matrix with all zero entries. 

 
4) For the given set of objects, together with the indicated notions of addition and 

scalar multiplication, determine whether each of the ten vector space axioms 
holds: real pairs  ,x y , where 

 

         2 2 4
, , : , ,    , : , .

5 5

kx ky kx ky
x y x y x x y y k x y

           
 

 (5) 

  
 
20pts 
 
Solution 

1) through 5) : Since  2V   but with only scalar multiplication differing, these 
axioms hold (since they reference only vector addition). 

 

6)  ,k x y V when  ,x y V and k since both 
2

5

kx ky
and 

2 4

5

kx ky
are 

clearly real numbers then. 
7) We have 

 

              

   

2 2 4
, , , ,

5 5

2 2 2 4 2 4
,

5 5 5 5

2 2 4 2 2 4
, ,

5 5 5 5

, , ,

k x w k y z k x w k y z
k x y w z k x w y z

kx ky kw kz kx ky kw kz

kx ky kx ky kw kz kw kz

k x y k w z

      
      

 
       

 
          

   
 

 

  
         so this axiom holds. 

8) We have 
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          

   

2 2 4
, ,

5 5

2 2 2 4 2 4
,

5 5 5 5

2 2 4 2 2 4
, ,

5 5 5 5

, , ,

k m x k m y k m x k m y
k m x y

kx ky mx my kx ky mx my

kx ky kx ky mx my mx my

k x y m x y

      
   

 
       

 
          

   
 

 

  
so this axiom holds 
 
9) We have 
 

 

  

          

2 2 4
, ,

5 5

2 2 4 2 2 4
2 2 4

5 5 5 5
,

5 5

5 2 5 2 5 4 5
5 5 5 5,

5 5

2 2 4
, , ,

5 5

mx my mx my
k m x y k

mx my mx my mx my mx my
k k k k

kmx kmy kmx kmy

km x km y km x km y
km x y

    
 

                             
 
 
 

     
  
 
 

  
  
 

(6) 

  
so this axiom holds. 
 
10) We have 
 

   1 2 1 2 1 4 1 2 2 4
1 , : , ,

5 5 5 5

x y x y x y x y
x y

                 
   

 

  
which is not  ,x y in every instance. For example, 

         2 2 1 2 2 4 1
1 2, 1 , 0,0 2, 1

5 5

       
     

 
. Thus all axioms hold except 

the last. 
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5) Prove that for any (real) vector space  , , ,V   (satisfying the ten axioms)—no 

matter how bizarre the addition  and the scalar multiplication   are—we must 
have 0 u z for any vector Vu ( ), where z is the “zero” vector in the 
space, i.e. where z is the additive identity in V . Be sure to list the axioms used in 
your proof. Feel free to use the fact that   

 

 
,  or

,

   
   

w v v w z

v w v w z
 (7) 

 
i.e. that if a vector w acts like z even for just one Vv , then it is z . On the other 
hand, you may also do what you did in the relevant type of homework problems 
(which invents the fact indicated in equation (7) for you).                                                         
 

15pts 
 
Solution  
 
By axiom 8)  

 
  0 0 0 0 ,  u u u    (8) 

 
which, by property of the number 0 , gives  
 
 0 0 0 . u u u    (9) 
 
But now this is the left-hand side of equation (7) above with 0w u (and, less 
important, 0v u ). So by the right-hand side of equation (7) 0 w u z . 
  
 

6) By use of the relevant “if and only if” theorem, determine whether the following 
is a subspace of nnM : ( nnM is the vector space of n n matrices with ordinary 

matrix addition and scalar multiplication.) the set W of all n n matrices A such 
that TA A  . MAKE SURE AND REFERENCE AND USE THE THEOREM 
in determining your conclusion. Either way, prove your conclusion. Note that we 
have chosen here 

 

  .T
nnW A M A A     (10) 

  
In referencing the theorem, it might be helpful to refer toW . 

 
20pts 
 
Solution  
 



7 
 

The theorem is as follows: Let W be a non-empty subset of elements of a real vector 
space V . Then W is, in addition, a (real) subspace of V iff 
 
 , ,  , .c k W c k W    u v u v  (11) 
 
Changing the notation in (11) to be more traditional for matrices (as in (10)) we could 
write (11) as 
 
 , ,  , .c k A A W cA kA W       (12) 
 
To check that our hypotheses hence conclusion of this theorem hold, we first note that the 
subset W defined by (10) is nonempty: if nothing else 0A  (the zero matrix) is “skew”, 
i.e. satisfies TA A  , so that  0 nnW M    , where  is notation for the empty set. 

(A square zero matrix is also symmetric, i.e.  TA A for 0 nnA M  , but this is not 

relevant.) To show (12) always holds and, so, to show the set W is actually a subspace of 

nnM we note that when A and Aare both in subset W (giving both TA A   

and TA A   ), and when ,c k are arbitrary real numbers,  we have cA kA is also in 
W because 
 

        T T TcA kA cA kA c A k A cA kA             . (13) 

 
In (13) we used, in order, properties of the transpose, membership of A and A in subset 
W and finally properties of matrix algebra.   
   
 
 

7) Determine whether the following statement is (always) true or (sometimes) false: 
“If  1, , rS  v v is a linearly dependent (nonempty) set of vectors from a vector 

spaceV , then so is the set  1 1, , ,r rS   v v v , provided 1r V v .” If it is true, 

prove it, otherwise give a counter example. 
 
20pts 
 
Solution  
 
The statement is  (always) true: Since  1, , rS  v v is linearly dependent, by definition 

there exists real r -tuple    1, , 0, ,0 r
rk k     such that 

 
 1 1 r rk k  v v z , (14) 

 
where z denotes the “zero” vector in the relevant vector space. So then the equation 
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 1 1 1 1r r r rc c c     v v v z  (15) 

 
also holds for the non-trivial 1r  -tuple       1

1 1 1, , , , , ,0 0, ,0,0 r
r r rc c c k k 

        

: with this choice we have 
 
 

1 1 1 1 1 1 1 1 1 1 10 .r r r r r r r r r r rc c c k k k k k k                v v v v v v v v z v v z   
 (16) 
 
Here we used the result of problem 5 (in the form 10 r v z ), together with axiom 4 

(regarding the action of the zero vector on other vectors by addition), and then finally 
hypothesis (14). Thus, definition, S  is linearly dependent as claimed (and the statement 
is always true).  
  
 

8) Find the coordinate vector of w relative to basis  1 2 1,S P u u :  

 
 1 21 ,             2 ,               .x x a bx    u u w  (17) 

  
( 1P is the vector space of linear functions, with vector addition and scalar 

multiplication being the ordinary operations on functions.) 
 
15pts 
 
Solution  
 

  S



 

  
 

w  (18) 

 
is the coordinate vector of w relative to basis  1 2,S  u u iff 

 
 1 2  u u w ,  (19) 

i.e. iff 
 
    1 2 ,x x a bx      (20) 

 
which, by the rules of algebra on the vector space 1P , can be rewritten to emphasize 1P ’s 

standard basis  1, x and its independence as follows: 

 
    1 2 0,a b x          (21) 
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where the right hand side of (21) is to be thought of as the zero function, i.e. the zero 
vector in 1P . Since  1, x is linearly independent, by definition (21) holds iff  

 
 2 0,a b        (22) 
 
the zero here being the ordinary one in the reals. Easily we get (22) holds iff  

 ,  / 2a b a    , i.e. iff 

 

     / 2S

a

b a




  
        

w . (23) 

 
Indeed we confirm that with (23) we have 
 

 
           1 2 1 2 1 1

2
,

b a
x x a x x a x b a x a bx

a bx

  
           

 
 (24) 

 
as required by (20). 
  
 

9) Let 2 2:T   be linear, and suppose 
 

 
1 2 2 1

,  .
2 1 1 2

T T
       

        
       

 (25) 

 

What is 
1

0
T
 
 
 

? What is 
0

1
T
 
 
 

? What is the standard matrix  T of T ? Make sure 

you effectively prove this result rather than just “eye balling it”. 
 
15pts 
 
Solution  
  
Since (by inspection—you can work harder if need be) 
 

 
1 1 2 0 1 21 2 2 1

,     and       
0 2 1 1 2 13 3 3 3

           
               

           
, (26) 

 
then, by linearity, and with assumptions (25), we have 
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1 1 2 1 2 2 1 01 2 1 2 1 2
,     and

0 2 1 2 1 1 2 13 3 3 3 3 3

0 1 2 1 2 2 1 12 1 2 1 2 1
.

1 2 1 2 1 1 2 03 3 3 3 3 3

T T T T

T T T T

                
                         

                
                

                      
                

 (27) 

 
One may have intuited this, but this is a rigorous way to show the result. By theorem then 
the standard matrix  T is given by 

 

   1 0 0 1 0 1
    .

0 1 1 0 1 0
T T T

            
              
               

 (28) 

  
 
 
  


