
Math 313 Final KEY 

Winter 2011 

section 003 

Instructor: Scott Glasgow 

 

Serious Instructions: Write your name very clearly on this exam. In 
this booklet, write your mathematics clearly, legibly, in big fonts, and, 
most important, “have a point”, i.e. make your work logically and even 
pedagogically acceptable. (Other human beings not already 
understanding 313 should be able to learn from your exam.) To avoid 
excessive erasing, first put your ideas together on scratch paper, then 
commit the logically acceptable fraction of your scratchings to this 
exam booklet. More is not necessarily better: say what you mean and 
mean what you say.  

 
Instructions for those who want their psychology to be optimal for an 
assessment1:  a) you should communicate in complete sentences, 2) 
you should write on your own paper and d) you should be neat as 
possible.   
 
NOTE: Almost none of the problems below are worth 25 points. That’s 
funny. 

  

  

                                            
1 In case of an overview of this document by an administrator, my students have learned of research 
indicating that humorous instruction may increase capacity on exams. This claim is similar to the 
following: “Three grams of soluble fiber daily from whole grain oat foods, like Honey Nut Cheerios, in a 
diet low in saturated fat and cholesterol, may reduce the risk of heart disease.” So there.   



 

1. Put the following matrix in reduced row-echelon form: 
 

 

1 1 1 1

1 1 1 1 .

4 2 1 4

 
   
  

 (1) 

15pts 

Solution  

The row reduction may proceed as follows: 

 

2 1 2/( 2)
3 2 2

3 4 1 3/( 3)

1 3 1 2

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 2 0 2 0 1 0 1

4 2 1 4 0 6 3 0 0 2 1 0

1 1 1 1 1 1 0 3 1 0 0 2

0 1 0 1 0 1 0 1 0 1 0 1 .

0 0 1 2 0 0 1 2 0 0 1 2

R R R
R R

R R R

R R R R

 


 

 

     
             
            

     
     
     
            

 

  

 (2) 

In whichever way the row reduction proceeds, the row echelon form is unique—the last 
matrix indicated in (2) is the answer. 

 

2. Solve the following system of 3 equations and 3 unknowns by performing Gauss-
Jordan elimination on the relevant augmented matrix. 2 points for doing this, 3 
points for checking you answer works. 

 

 

1

1

4 2 4

x y z

x y z

x y z

  
   
  




 (3) 

15pts 

Solution  

The augmented matrix is the matrix in (1), Gauss-Jordan elimination giving the last 
matrix in (2), which is code for the equations/statement of the solution 



 

2

1

4 2 2

y z

x

y

y

z

z

x

x 


  
  
   

 (4) 

Check: Clearly 

 

 
 
 

2 1 2 1,

2 1 2 1,  and

4 2 2 1 2 4,

   

    

     



 (5) 

so our answer indicated in (4) solves (3). 

3. Determine whether 
 
  , ,Spanx u v w  (6) 

where 

 

1 1 1 1

1 , 1 , 1 , 1 .

4 2 1 4

       
                   
              

u v w x  (7) 

Of course explain why or why not for full credit. 

15pts 

Solution  

In problem 2) we showed that 

  2 1 2 , , ,Span   x u v w u v w  (8) 

that is 

 

1 1 1 1

1 2 1 1 1 2 1 ,

4 4 2 1

       
                  
              

 (9) 

so in fact (6) holds. 

 

 



4. Find the inverse of the matrix 
 

 
a b

A
c d

 
  
 

 (10) 

by row reducing A I    to 1I A   . Assume the parameters , , ,  and a b c d do not take on 

any special values, nor have a special relationship among them, i.e., row reduce 
naively, without worrying about any divisions by hidden zeros. 

15 pts 

Solution 

The naïve row reduction mentioned may proceed as follows: 

 

 

 

2 1 1 2

1/ 1/

1/

1

1 0 1 0

0 1 0

00

00

1 0 1
.

0 1

aR cR ad bc R bR

R a R a

R a

a b a b
A I

c d ad bc c a

ad ab ad bc d ba ad bc

c a ad bc c aad bc

d b
I A

c aad bc

  



   
            

     
         

           



 



 (11) 

 

5. For the given set of objects, together with the indicated notions of additionand 
scalar multiplication , determine whether each of the ten vector space axioms 

holds: the set of objects is real triples  , ,x y z , where 

 
          , , , , : , , ,    , , : , , .x y z x y z x x y y z z k x y z kx y z            (12) 

Recall that for vector space  , , ,V   the ten axioms are 



 

   

     

1.      , ,  

2.      , ,  

3. , , ,  

4.            s.t ,  

5.            s.t 

6.          , ,  

7.          , , ,  

V V

V

V

V V

V V

k V k V

k V k k k

 

   
    

      

     
     
    

      

u v u v

u v u v v u

u v w u v w u v w

z u u z u

u u u u z

u u

u v u v u v

 
   

     
   

8.      , , ,  

9.      , , ,  

10.         ,  1

k m V k m k m

k m V k m km

V

      

    

  

u u u u

u u u

u u u

   

   


 (13) 

20pts 

Solution  

Closure axioms 1) and 6) hold because sums and products of real numbers give real 
numbers, and because on the right hand sides of equation (12) the objects are again 
triples of those real numbers. 2) through 5) will also hold, since they reference only 
vector addition, which in (12) is the standard notion (giving the relevant fraction of 
the 10 axioms as theorems). For axiom 7) we have 

 

         
     

     

 , , , ,  , , , ,

, , , , , ,

  , ,  , , ,

k x y z x y z k x x y y z z k x x y y z z

kx kx y y z z kx y z kx y z

k x y z k x y z

                

          

   

 

 

 (14) 

as required. But for axiom 8) we have the generally distinct results 

 

        
           

 

, , , , , , ,  and

, , , , , , , , , ,

, 2 , 2 ,

k m x y z k m x y z kx mx y z

k x y z m x y z kx y z mx y z kx mx y y z z

kx mx y z

    

      

 



   (15) 

so that this axiom does not hold. Axioms 9) and 10) hold in an obvious way— 
essentially because the scalar multiplication is normal in the one slot it affects. 

 

6. Consider the following set S of vectors in 4 . Explain why S is linearly dependent 
without doing any calculations. Next, give a basis for the subspace Span W S
and use this basis for W to express one of the vectors in S as a linear 



combination of others in S . (No fair saying a vector is 1 times itself.) Finally, what 
is the dimension of Span W S ? 

 

 

1 1 2 1 1

1 0 3 3 1
, , , ,

2 2 4 2 2

0 1 1 2 1

S

          
          
                                           

 (16) 

You may use the fact that 

 

1 1 2 1 1

1 0 3 3 1
: :

2 2 4 2 2

1 0 3 3 0

0 1 1 2 0

0 0 0 0

0 1 1 2 1

1

0 0 0 0 0

A B

   
   
    
   
       

 
  (17) 

where the tilde ( ) indicates “row equivalent to”. 

20pts 

Solution 

S is 5 vectors from 4 , so since 45 4 dim   , theorem, S is dependent. Next, since B

is in reduced row echelon form, its pivot columns (clearly) define a basis for its column 
space, all other columns (clearly) linear combinations then of these special columns. 
These pivot columns are its first, second and fifth. And since, theorem, row reduction 
does not alter the linear relationships among columns of a matrix, the associated 
columns of A are a basis for the column space of A : the first, second and fifth columns 
of A give a basis for the column space of A .  So since these columns are the first, 
second and fifth elements of S , it must be that the first, second and fifth elements of S
are a basis for Span W S : a basis for Span W S is the set 

 

1 1 1

1 0 1
, , .

2 2 2

0 1 1

S

      
      
                           

 (18) 

Here we see then thatdim dimSpan dimSpan 3W S S S     , which answers the last 

question.  

With the theory just presented, we have that since 



  1 2 3 4 5

1 0 3 3 0

0 1 1 2 0

0 0 0 0 1

0 0

:

0 0 0

 
 
 
 










b b b b b  (19) 

gives 

        3 1 2 1 2 4 1 2 1 23 3 ,   1 3 2 ,23        b b b b b b b b b b  (20) 

it must be that 

 

2 1 1 1 1 1

3 1 0 3 1 0
3 ,   3 2 ,

4 2 2 2 2 2

1 0 1 2 0 1

           
           
              
           
                       

 (21) 

either one of which two statements answering then the second question. 

 

7. Determine bases for both the image and kernel of (left multiplication by) A , 
where 

 

1 1 2 1 1

1 0 3 3 1
: .

2 2 4 2 2

0 1 1 2 1

A

 
 
 
 
   

 (22) 

20 pts 

Solution 

Since, by definition of matrix multiplication (from the left), 

 
 

 

1

1 1 1 1

1 1 1

Span , ,

: : , , ,

n n n n

n

n n n

x

A x x

x

x x x x

 
         
  

  

x c c c c c c

c c

   

  

 (23) 

then clearly the image of Ax x is the column space of A . So from the previous 
problem we have that a basis for the image of (left multiplication by) A is 



 

1 1 1

1 0 1
, , .

2 2 2

0 1 1

S

      
      
                           

 (24) 

Now the kernel of (left multiplication by) A is unaltered by row reduction (row reduction 
does not change the solution space of a system of equations—which is why we use it to 
solve them), so the kernel of A is the kernel of B in (17), the latter exposed by realizing 

that the structure of B there dictates that for  1 5, , ker
T

x x B x  we have 

 

1 3 4 2 3 4 5

1 3 4

2 3 4

5

3 3 0 2 0

3 3

2

0,

x x x x x x x

x x x

x x x

x

       

  
 


 (25) 

i.e., 

 

1 3 4

2 3 4

3 3 43

4 4

5

3 3 3 3 3 3

2 1 2 1 2

Span , :Span ,1 0 1 0

0 1 0 1

0 0 0 0 0

x x x

x x x

x x x Sx

x x

x

                  
                                            

            
                                    

x  (26) 

where then S , which is clearly linearly independent, is a basis for the kernel A . 

 

8. Let :T V W be linear, V and W finite dimensional vector spaces.  Recall 
 
   Im : :  for some T W T V   w w v v  (27) 

is a subspace of W (hence nonempty, closed under linear combination). Assuming 

 Im WT  z ( Wz denotes the additive identity inW ), we get dim Im 1T  (and

dimIm dimT W   ), and by previous theorem get that ImT has a basis  1, , mw w

with, as indicated, 1m  (and dimm W   ). (Note 1m  means here that the set is not 
empty.) Since each of these w ’s is in the image ofT , as per (27), each one of them is a 

“T of something”: there exist 1, , m Vv v , necessarily distinct, such that

      1 1, , , ,m mT Tw w v v  . So       1 1, , , ,m mT Tw w v v  and 



    1 , , mT Tv v is a basis for ImT , hence linearly independent, etc. Show that the set 

 1, , mv v is also linearly independent. 

15pts 

Solution 

Since a basis     1 , , mT Tv v is independent, we have 

    1 1 1 0.m m W mk T k T k k      v v z   (28) 

We are hoping that this implication implies the implication 

 1 1 1 0m m V mk k k k      v v z   (29) 

so that  1, , mv v is also independent. So we start on the left-hand side of (29) and see 

if we can pass to the right hand side of (29) using (28) and the linearity ofT . This is no 
problem: 

 

   

   

do the same thing to
both sides of an equation  linear

1 1 1 1

 linear

1 1

1 0

T

m m V m m V W

T

m m W

m

k k T k k T

k T k T

k k

       

   

   



v v z v v z z

v v z

 




 (30) 

the last step by the given independence statement (28).   

 

9. As above assume :T V W is linear, V and W finite dimensional vector spaces. 
Recall 

   ker : : WT V T  v v z  (31) 

is a subspace ofV , hencedimker dimT V   , i.e., the kernel of T is finite 
dimensional (with dimension no bigger than that of V ).  Now, similar to the last 

problem, assume  ker VT  z ( Vz denotes the additive identity in V ), so that there 

is a basis for kerT : assume a basis  1, , nu u for the kernel ofT , with, as 

indicated, 1n  (and dimn V   ).  (Note 1n  means here that the set is not 
empty.)  Forgetting these kernel ideas for a moment, and using the basis 

    1 , , mT Tv v of ImT  introduced in the previous problem, we see that for 

every Vv there are scalars 1, , ma a such that 



      1 1 .m mT a T a T  v v v  (32) 

UsingT ’s linearity and the vector space axioms we see that (32) is equivalent to 

   1 1 .m m WT a a   v v v z  (33) 

So then it must be that 

  1 1Span , , , , , .m nV  v v u u   (34) 

Why? Because (33) says that 

     1 1 ker : : ,m m Wa a T V T      v v v v v z  (35) 

and since we’re assuming that  1, , nu u is a basis for kerT , we have 

 1ker Span , , nT  u u . So (35) (and previous statements) says that for any Vv

there are scalars 1, , ma a  (giving (32)) and scalars 1, , nc c such that 

  1 1 1 1 ,m m n na a c c     v v v u u   (36) 

i.e., using the vector space axioms (allowing for algebra to be performed), for any 
Vv there are scalars 1, , ma a and scalars 1, , nc c such that 

  1 1 1 1 1 1Span , , , , , .m m n n m na a c c      v v v u u v v u u     (37) 

Consequently  1 1Span , , , , ,m nV  v v u u  . We then easily get 

 1 1Span , , , , ,m n Vv v u u  , so that 

   1 1 1 1Span , , , , , Span , , , , ,m n m nV V V   v v u u v v u u    , since a) 

1 1, , , , ,m n Vv v u u  and since b) V is closed under linear combination. Cool. 

We’ve just established (34). Now I leave you to show that i)  1 1, , , , ,m nv v u u  in 

(34) is linearly independent, hence leave you to show that ii) 

 dim dim Im dimker .V T T   (38) 

[(38) is the “dimension theorem”, which can be used in subsequent problems. It 
works even if one or more of the indicated dimensions are zero, which we 
precluded in deriving it. It even works ifdim 0V  . (In that particular case, since
dim Im ,dim ker 0T T  , we must havedim Im dim ker 0 dimT T V   , the former 

statement giving that T is the zero map—it kills “everything”—and this despite the 



fact that the second statement says that it only kills zero.) You can thank me later 
for handing this theorem to you—instead of asking that you remember it.] 

 

20pts 

Solution 

We first want to show that  1 1, , , , ,m nv v u u  is linearly independent, i.e., show that 

 1 1 1 1 1 1 0.m m n n V m na a c c a a c c            v v u u z     (39) 

So we start on the left hand side of (39) and try to find a path to the right hand side, 

given that a)  1, , mv v is linearly independent, b)  1, , nu u is linearly independent and 

spans the kernel of T , and c) that     1 , , mT Tv v is linearly independent and spans 

the image of T . Perhaps we will only use some of these facts at this late stage. Let’s 
see. 

Applying linear :T V W to each side of the vector equation in (39) we get 

 
         

1 1 1 1

1 1 1 1

m m n n V

m m n n V W

a a c c

a T a T c T c T T

      

      

v v u u z

v v u u z z

 
 

 (40) 

Then using that each of theu ’s is in the kernel ofT , that linear combinations of the 

additive identity Wz  give Wz  , which “does nothing” to anything in W , we get (40) 

becomes 

 
   

1 1 1 1

1 1 .
m m n n V

m m W

a a c c

a T a T

      

  

v v u u z

v v z

 


 (41) 

But since     1 , , mT Tv v is linearly independent, we have 

 
   

1 1 1 1

1 1 1 0,
m m n n V

m m W m

a a c c

a T a T a a

      

      

v v u u z

v v z

 
 

 (42) 

i.e., in short, 

 1 1 1 1 1 0.m m n n V ma a c c a a         v v u u z    (43) 

But since a statement implies itself, we could also write this as 



 
1 1 1 1

1 1 1 1 1

1 1 1

, 0

, 0,

m m n n V

m m n n V m

n n V m

a a c c

a a c c a a

c c a a

      
         
     

v v u u z

v v u u z

u u z

 
  
 

 (44) 

the last implication following by the fact that the zero multiple of anything in V is Vz , that 

sums of Vz give Vz , and/or that Vz does nothing to anything inV . But then since 

 1, , nu u is independent, we then have 

 1 1 1 1 1 1 1

1 1

, 0

0 ,
m m n n V n n V m

m m

a a c c c c a a

a a c c

            
      

v v u u z u u z   
 

 (45) 

i.e., 

 1 1 1 1 1 10m m n n V m ma a c c a a c c            v v u u z     (46) 

which is the same as (39). 

So now with  1 1, , , , ,m nv v u u  linearly independent (which implies all nonempty 

subsets are independent, including the important ones we’ve thought about recently) 
and with (34), we have 

 

   
       

   

1 1 1 1

1 1 1 1

1 1

dim dimSpan , , , , , , , , , ,

, , , , ( ), , ( ) , ,

dimSpan ( ), , ( ) dimSpan , ,

dim Im dim ker ,

m n m n

m n m n

m n

V m n

T T

T T

T T

   

   

 

 

v v u u v v u u

v v u u v v u u

v v u u

   

   

 
 (47) 

which is the desired (38), i.e. the dimension theorem. In (47) we also used 

 1( ), , ( )mT Tv v is linearly independent. 

 

10. Explain why it is that if A is a (real) m n matrix with n m , then the kernel of A , 
i.e. 

  ker : : ,n mA A   x x 0   (48) 

can’t just be only the zero vector. (That is, show that  ker nA  0  ). Hint: use 

the dimension theorem.  (Aren’t you glad I reminded you of that?) 

15pts 



Solution 

Let : n mT   of the previous problem be defined by ( )T Ax x , so that T is a linear 

map from a finite dimensional vector space to another one, and so that ker kerA T . 
The dimension theorem (38) in this context says that 

 dim dim Im dimker dimIm dim ker dimker .n V T T T A m A        (49) 

Here we also used that ImT is a subspace of m , so thatdim Im dim mT m  . So then 
with 1n m n m    [since these are (nonnegative) integers], from (49) we have 

 dim ker 1 dim ker 1A n m A      (50) 

and ker Acan’t be  n0  (which we say has dimension 0).  

 

11. The eigenvalues of 

 

1 2 2

1 0 2

1 3 5

A

 
   
   

 (51) 

are 1, 2,  and3 . Compute the eigenspaces associated to each of these 

eigenvalues. (Recall eigenspaces are subspaces, hence specified as the span of a 
basis.) 

15pts 

Solution 

We have 



 

   

   

1

2

0 2 2 0 1 1 1 0 1

ker 1 ker 1 1 2 ker 1 1 2 ker 0 1 1

1 3 4 0 2 2 0 0 0

1

span 1 ,

1

1 2 2 1 2 2 1 0 0

ker 2 ker 1 2 2 ker 0 1 1 ker 0 1 1

1 3 3 0 0 0 0 0 0

E A I A

E A I A

       
                 
           

  
     
    

      
               
         

   3

0

span 1 ,

1

2 2 2 2 2 2 2 0 1

ker 3 ker 1 3 2 ker 0 2 1 ker 0 2 1

1 3 2 0 0 0 0 0 0

1

span 1 .

2

E A I A





  
     
    

       
                 
          

  
     
    

 (52) 

 

12. For k any positive integer, compute 
 

 

1 2 2

1 0 2 .

1 3 5

k 
  
   

 (53) 

You may use that 

 

1 0 1  1 0 0 1 0 0  1 1 1

1 1 1  0 1 0 0 1 0  1 1 0 ,

1 1 2  0 0 1 0 0 1  0 1 1

   
      
      

  (54) 

i.e., you may use that the two matrices in (54) are row equivalent. 

15pts 

Solution 



 

If square matrix A is diagonalizable, then we can write 

 

 1 1

1 1
1 1

0 0

0 0

kk k

k k

k
n n

A SDS SD S

S S S S

 

 

 

 

 

  
      
     

 
 (55) 

where  S ’s columns are eigenvectors of A . A will certainly be diagonalizable if all the 

eigenvalues 1, , n  are distinct, which, by the previous problem, is what occurs for the 

matrix of (53). And by the results of that previous problem, we can take 

 1

1 0 1 1 1 1

1 1 1 1 1 0 ,

1 1 2 0 1 1

S S 

   
         
      

 (56) 

where we used (54). So then by (55) we have 

 

1
1

0 1 0 1 1 0 0 1 1 1

1 1 1 0 2 0 1 1 0

0 1 1 2 0 0 3 0 1 1

1 0 1 1 0 0 1 1 1

1 1 1 0 2 0 1 1 0

1 1 2 0 0 3 0 1 1

1 0 3 1 1 1

1 2 3 1 1 0

1 2 2 3 0 1 1

k k

k k

k
n

k

k

k

k k

k k

A S S







       
              
            
     

           
          
   
       
     



1 1 3 3 1

1 2 1 2 3 3 1 .

1 2 1 2 2 3 2 3 1

k k

k k k k

k k k k

  
      
        

 (57) 

 

13. Prove that for a real m n matrix A , we must have ker kerTA A A . To do this one 
shows that ker kerTA A A (easy), and then shows that ker kerTA A A (harder).  
For the easy first part, one simply notes that the definitions 
 

 
 

  
ker : :

ker : :

n m
m

T n T n
n

A A

A A A A

   

   

x x 0

x x 0

 

 
 (58) 



make it so that 

 ker ker ,TA A A  x x  (59) 

giving ker ker TA A A , and this because clearly 

       .T T T
m m nA A A A A A    x 0 x x 0 0  (60) 

For the harder part ker kerTA A A , we want to somehow get that 

 ker ker ,TA A A  x x  (61) 

i.e., we need to somehow show the converse of (60), i.e., we must somehow 
show that 

   .T
n mA A A  x 0 x 0  (62) 

So I leave it to you to prove (62), i.e., I leave it to you to show that you can start 
on the left of (62) and find a way to get to the right of (62). Hint: note that 

     0,T T
n nA A A A     x 0 x x x 0  (63) 

and then note that 

         ....T T T T TA A A A A A   x x x x x x  (64) 

 (If I go any further here I will have proved the whole thing for you.) 

15pts 

Solution 

Following the hint, we find 

 
         

2

0

.

TT T T T T T
n n

m

A A A A A A A A A A

A A A A

        

    

x 0 x 0 x x x x x x x x

x x x x 0
 (65) 

 

14. Find all least squares solutions 1

2

x

x

 
  
 

x of the inconsistent system 



 
1 2

1 2

1 2

7

2 4

3 1.

x x

x x

x x

 
  

   


 (66) 

 

15pts 

Solution 

Note that the system is in fact inconsistent because 

 

1 1 7 1 1 7 1 1 7 1 1 7

2 1 4 0 1 18 0 1 18 0 1 18 ,

1 3 1 0 4 6 0 2 3 0 0 33

       
                
   

 

          

 

 

    (67) 

the latter the augmented matrix for the obviously inconsistent system 

 
1 2

2

, ,7

18

0 33.

x x

x

 

 


  (68) 

So we write (66) as 

 1

2

1 1 7

2 1 4

1 3 1

x
A

x

   
                   

x b  (69) 

and instead of (69) solve the (always consistent) normal equations 

 

1 1 1

2 2 2

1 1
6 6 0 1 2 1

2 1
11 0 11 1 1 3

1 3

7
1 2 1 0

4 ,
1 1 3 0

1

T T

x x x

x x x

A A A

 
                                



 
               

x b  (70) 

the one and only solution to which obviously being 



 1

2

0
.

0

x

x

   
   
  

 (71) 

 

15. Here is a quadratic form: 

 2 2
1 2 1 1 2 2( , ) 14 4 11 .Q x x x x x x    (72) 

Find new variables 

 1 11 21 1

2 12 22 2

,Ty P P x
P

y P P x

     
       
     

y x  (73) 

with P an orthogonal matrix, such that in terms of the new variables the form in (72) is 
diagonal. Write out your form with the old variables 1 2,x x , but in the diagonalized form, 

i.e., write out that 

    2 22 2 2 2
1 2 1 1 2 2 1 1 2 2 1 11 1 21 2 2 12 1 22 2( , ) 14 4 11 .Q x x x x x x y y P x P x P x P x             (74) 

Here you get 5 of the 10 points only by checking that 

    2 22 2
1 1 2 2 1 11 1 21 2 2 12 1 22 214 4 11 .x x x x P x P x P x P x        (75) 

Is the form (72)(74) positive definite? Positive semidefinite? Indefinite? Negative 
semidefinite? Negative definite?  Explain. 

20pts 

Solution 

Write (72) as 

   12 2
1 2 1 1 2 2 1 2

2

14 2
( ) ( , ) 14 4 11 .

2 11
Tx

Q Q x x x x x x x x A
x

   
          

x x x  (76) 

Inserting the inverse of (73) into (76), which, with orthogonality is 

 1 11 12 1

2 21 22 2

,
x P P y

P
x P P y

     
       
     

x y  (77) 

we get 



 

   

1 1 1 2 2
1 1 2 2

2 2 2

( ) : ( )

0
,

0

T T T T

T

q Q P P A P P AP D

y y
y y

y y


 



   

     
       
     

y y y y y y y y

 (78) 

provided 1

2

0

0
TP AP D




 
   

 
, i.e., provided orthogonal matrix P diagonalizes A . To 

find the eigenvalues and then orthogonal matrix P we note that 

 

 

   
  

2

2 2 2

14 2
0 ( ) : det det 25 14 11 4

2 11

25 2 7 11 2 25 2 3 5 5 10 15 10 15

10 15 ,

AP I A


   


     

 

 
          
               

  

 (79) 

and then that 

 

   

   

10 14 2 4 2 2 1 1
10 ker 10 ker ker ker Span ,

2 10 11 2 1 0 0 2

15 14 2 1 2 1 2 2
15 ker 15 ker ker ker Span ,

2 15 11 2 4 0 0 1

A

A

E I A

E I A

           
                       

          
                      

(80) 

so that with transformation 

 

1 11 12 1 1

2 21 22 2 2

1 11 21 1 1

2 12 22 2 2

1 21
,

2 15

1 21
,

2 15
T

x P P y y
P

x P P y y

y P P x x
P

y P P x x

        
           

        


        
                   

x y

y x

 (81) 

and with result (78), form (72) can be rewritten as 

 
2 2

2 2 1 2 1 2
1 1 2 2

2 2
( ) ( ) 10 15 .

5 5
T x x x x

Q q P y y              
   

x x  (82) 

We check that (82) is correct by noting that 



 

   

   
          

2 2
2 21 2 1 2

1 2 1 2

2 2 2 2
1 1 2 2 1 1 2 2

2 2
1 1 2 2

2 2
1 1 2 2 1 2

2 2
10 15 2 2 3 2

5 5

2 4 4 3 4 4

2 3 4 2 4 3 4 2 4 3

14 4 11 : ( , ).

x x x x
x x x x

x x x x x x x x

x x x x

x x x x Q x x

             
   

     

      

   

 (83) 

From (82) we see the form is positive definite: 

 
2 2

1 2 11 2 1 2

1 2 2

2 0 02 2
0 10 15 .

2 0 05 5

x x xx x x x

x x x

                    
 (84) 


