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Math 313 Midterm III KEY 
Winter 2011 
section 003 

Instructor: Scott Glasgow 
 

Write your name very clearly on this exam. In this booklet, write 
your mathematics clearly, legibly, in big fonts, and, most important, 
“have a point”, i.e. make your work logically and even pedagogically 
acceptable. (Other human beings not already understanding 313 
should be able to learn from your exam.) To avoid excessive erasing, 
first put your ideas together on scratch paper, then commit the 
logically acceptable fraction of your scratchings to this exam booklet. 
More is not necessarily better: say what you mean and mean what 
you say.  

 
Honor Code: After I have learned of the contents of this exam by any 
means, I will not disclose to anyone any of these contents by any 
means until after the exam has closed. My signature below indicates I 
accept this obligation. 

 
Signature: 
 

(Exams without this signature will not be graded.) 
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1) Recall, as in problem 45 in 6.5, that one can always define an innerproduct on a 
real, finite dimensional vector space V by defining it on a basis in a certain way: 
Start with a specific basis  1, , nb b (for a vector space V with dim 1V n  ), 

and then DECREE that, for  , 1, ,i j n  , the innerproduct , has the properties 

that 
 

 
0,   

, : .
1,   i j ij

i j

i j



   

b b  (1) 

  
Thus we essentially just decree that our favorite basis  1, , nb b is orthonormal 

with respect to the inner product we are trying to define. Recall also that we then 
extend the definition of the innerproduct to all of V by use of (1) together with the 
linearity of , : if we want to know the innerproduct ,u v of any two vectors 

u and v in V , we simply use that  1, , nb b is a basis for real vector space V , 

hence use that for any such two vectors there is a unique n -tuple of real numbers 

 1, , n
nc c c   and   1, , n

nd d d   such that 

 

 1 1 1 1
1 1

: ,     and       :
n n

n n i i n n j j
i j

c c c d d d
 

        u b b b v b b b  , (2) 

   
so that with (1) and linearity we get 

 

 

 

1 1 1 1 1 1 1

1

1 1 1

, , ,

,

n n n n n n n

i i j j i j i j i j ij i i
i j i j i j i

n n n

n

c d c d c d c d

d

c d c d c c

d


      

    

 
       
  

    u v b b b b

c d  
 (3) 

 
the last indicating the ordinary innerproduct of two vectors in n . So suppose we 

choose (nonstandard) basis  1 2

1 1
, ,

0 1

    
     

    
b b  for 2 , yet, as in (1), decree that 

 

 

1 1 2 2

1 2 2 1

1 1 1 1
, , 1 , , ,

0 0 1 1

1 1
, , 0 , .

0 1

       
          

       

   
     

   

b b b b

b b b b

 (4) 

 
Now compute 
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3 1 3 1

, ,
13

    
    

    
u v  (5) 

 
Hint: think about/use (2) and (3). Note the answer is NOT 

 

      
1 3 3 1

1 3 3 1 3 1 3 1 3 2 3.
13

    
             

    
 (6) 

 
15pts 
 
Solution 
 
As in (2) write 
 

 

1 2
1 1 2 2 1 2

2

1 2
1 1 2 2 1 2

2

1 3 1 1
,     and     

0 13

1 13 1

0 11

c c
c c c c

c

d d
d d d d

d

       
           

       
      

                  

u b b

v b b

 (7) 

 

so that clearly 2 1 2 13, 1, 1, 3c c d d     , and from (3) get 

 

 1 1

2 2

11 3 3 1 3
, , 3 3 0.

1 3 13

c d

c d

           
                               

u v c d  (8) 

 

Thus 
1 3 3 1

,
13

      
   

      
is another orthogonal basis for 2 with respect to the 

innerproduct defined by (4), and an another orthonormal basis is 

1 31 1 3 1
,

2 2 13

      
   

      
: note, for example, 

 

 
 

1 11 3 1 3 1 3 1 31 1 1 1 1
, , 1 3

2 2 4 4 43 33 3 3 3

1.

              
               

                  


 (9) 
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2) Find all least squares solutions 1

2

x

x

 
  
 

x of the inconsistent system 

 

 1 1
,

0 1

x 


 (10) 

i.e. of the system 
 

 1 2

1 2

1 0 1

0 0 1

x x

x x

 
 

 (11) 

  
Hint: You might want to look at the Long Tutorial in problem 4. Also, as 
indicated, there may or may not be more than one solution. 
 

15 points 
 
Solution  
 
Write inconsistent system (11) as 
 

 11

2

1 0 1 0 1
.

0 0 0 0 0 1

xx
A

x

        
            

        
x x b  (12) 

 

So while (12) can never actually hold, we can in fact minimize 
2

A x b , and the theory 

presented in the text (and below in problem 4) shows that any such x minimizing 
2

A x b satisfies the normal equation 

 

 

1 1 11

2 2 2

1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 0 0 0 0 0

1 0 1 1 0 1 1
,

0 0 1 0 0 1 0

T

T

T T

x x xx

x x x

A A A

                
                  

                

         
             

         
x b

 (13) 

 

which holds iff 1 1x  . Since 2x is unspecified, the set of x ’s minimizing 
2

A x b is the 

set 
 

 
1

: .c
c

  
  

  
  (14) 
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3) Find all least squares solutions  1xx of the inconsistent system 

 

 1 1
,

0 1

x 


 (15) 

 
i.e. of the system 
 

 1

1

1 1

0 1

x

x




 (16) 

 
Hint: You might want to look at the Long Tutorial in the next problem. Also, as 
indicated, there may or may not be more than one solution. But the (least squares) 
solution space of this problem will NOT be the same as the last problem. 
 
15 points 
 
Solution  
 
Write inconsistent system (16) as 
 

  1
1

1 1 1
.

0 0 0 1

x
x A

       
           

       
x x b  (17) 

 

While (17) never has a solution, any x minimizing 
2

A x b satisfies the normal equation 

 

 

       

   

1 1

1 1 1
1 1 1 0

0 0 0

1 1 1
1 0 1 ,

0 1 1

T

T

T T

x x

A A A

     
        

     

     
         

     

x x x

x b

 (18) 

 
which holds iff 1 1x  . There is no other variable to specify, so this is the unique solution 

of the minimization problem. 
 
 

4) Long Tutorial: Let A be a real m n matrix, with m n . Then the equation 
 

 A x b  (19) 
 

doesn’t always have a solution nx  : for any fixed, real m nA A  with 

m n there is at least a whole vector space of b ’s in m (less the zero vector)—
i.e. an entire subspace of m  (less the zero vector) from which b ’s can be 
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picked—such that (19) has no solution nx  . To see this realize that the image 
of A , which is all objects of the form Ax , is the column space of A , which is at 
most n ( m ) dimensional (since A has n columns), and, so, Ax x cannot be 
onto m . Thus there is at least one b in m not expressible as Ax for some 

nx  , and for any scalar 0  , A x b won’t have a solution either. (If it did 

have a solution, then we could rewrite A x b as  1A   x b , so that 

A x b does in fact have a solution, namely 1 x , where x is a solution of 
A x b ).  Anyways… 
 
When (19) doesn’t have a solution, we often try to “do the best we can”, i.e. try to 
pick x so that Ax is as close to b as possible, i.e. try to pick x to minimize 
 

 

           

      

fact2

.

T T T

T T T T T T

T T T T T T

A A A A A A A

A A A A A

A A A A

          

      

   

x b x b x b x b x b x b x b

x b x b x x b b x b

x x x b b x b b

 (20) 

 

Since T TAx b is a scalar (actually a 1 1 matrix),  TT T T T TA A A x b x b b x , and 

(20) simplifies to 
 

 
2

2 .T T T TA A A A   x b x x b x b b  (21) 

 
Now “you have been told” (hopefully you understand it as well) that in order to 

minimize 
2

A x b , you need to choose least squares ls: x x x where lsx satisfies the 

“normal equation” ls
T TA A Ax b , which, “you have been told”, always has a 

solution lsx .  One way to see that a lsx satisfying ls
T TA A Ax b minimizes the 

right hand side of (21) is to write there that ls ls ls:    x x x x y x , and note that 

ls  y 0 x x  certainly minimizes (21) when ls
T TA A Ax b : writing ls x y x in 

(21) gives (after a lot of algebra involving things like ls
T TA Ax y     ls

TT TA Ax y  

  ls
T TA Ay x    T TAy b , etc.) 

 

      2 2

ls ls ls0 ,A A A A A A A             x b y y b x b y b x b b x b  (22) 

 

where we used 
2

0A A A  y y y , equality holding certainly if y    0                                    

lsx x    lsx x , where, reminder, lsx is such that ls
T TA A Ax b .  On the other 

hand, since (22) holds (with ls: y x x ), to minimize 
2

A x b it is only 

necessary (and certainly sufficient) that A y 0 , i.e. only necessary that 
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 ls: ker : :n mA A      y x x v v 0  . So if we find a solution lsx to the 

least squares/normal equation ls
T TA A Ax b , we could add to that solution any 

solution v to A v 0 , getting ls x x v also minimizes 
2

A x b . (This is also 

clear from just thinking about 
2

A x b directly: 

  22 2 2 2

ls ls ls lsA A A A A A           x b x v b x v b x 0 b x b  .) But 

note that this ambiguity/potential non-uniqueness in the solution of the 
minimization problem need not be thought about “separately”, since the equation 

ls
T TA A Ax b already has the nullspace of A “built into it”: if ker Av , and 

lsx x solves T TA A Ax b , then so does ls x x v , this because then 

 

 
 ls ls ls 1 ls 1

ls .

T T T T T T T
mx nx

T T

A A A A A A A A A A A A A

A A A

        

 

x x v x v x 0 x 0

x b
 (23) 

  
Here we effectively proved that ker kerTA A A . But maybe ker kerTA A A , 
i.e. maybe there is at least one vector ker TA Aw with ker Aw , so that in fact 
in considering the solution space of T TA A Ax b we get “more non-uniqueness” 
than in considering the solutions space of A x b (when the latter manages to 
have a solution), which would be a strange set of affairs. (What if, for example, 
you just decide to never ever solve equations of the form A x b —since you may 
be frustrated at times in the attempt—but rather decide to always recast such 
equations into the form T TA A Ax b , since then you can never be frustrated. 
Something very bad happens if ker TA A is actually bigger than ker A , particularly 
when A x b actually isn’t frustrating. Think about it.)  
 
Thankfully, you have been shown that there can be no such ker TA Aw with 

ker Aw . The proof went something like this: if ker TA Aw then 1
T

nxA A w 0 . 

Rewrite 1
T

nxA A w 0   as   1
T

nxA A w 0 , so that ker TA Aw . But certainly 

colA Aw , and we then get 
 

    1ker col col col ,T
mxA A A A A

  w 0   (24) 

 
i.e. ker Aw . Here we used that ker TA and colA are orthogonal compliments, so       
that since the only vector orthogonal to itself is the zero vector, 

   1col col mxA A
  0 .  The only problem with this proof is that we never 

actually showed/proved that ker TA and colA are orthogonal compliments, i.e. 

never showed that  ker colTA A

  and  col ker TA A

  . The first of these two 

statements says that the set of all vectors orthogonal to every element in ker TA is 
exactly the column space of A , and the second of these statements says that the 
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set of all vectors orthogonal to every element in the column space of A is exactly 
the kernel of TA . The first statement is 
 

  1 0  for some T n
nxA A      c 0 c d d x x   (25) 

  
while the second statement is 
 

   10 .n T
nxA A     x c x c 0  (26) 

 
The backward arrows in each of (25) and (26) are easy to prove: if Ad x for 
some nx  , then, for (25), we have 
 

  1 1 0,
TT T T T T T

nx nxA A A A A         c 0 c d c x c x c x x c x 0  (27) 

 
and if  1

T
nxA c 0 , then, for (26) we have 

 

   1 0.
Tn T T T T T

nxA A A A       x c x c x c x x c x 0  (28) 

 
The forward arrow for (25) is sort of hard—5 points extra credit if you can prove 
that sometime within a week of taking this exam (hint: use an orthogonal basis for 
ker TA and complete to a basis of  m  d )—but you can prove the forward 

arrow in (26). Please do so now. (Hint:  TT T T T TA A A A A     c x c x c x x c x c , 

for every nx  . Now choose x wisely to get TA c 0 .)   
 
 

15 points 
 
Solution 
 
By the hint, 

 

 
2

0 ,T T T T TA A A A A A        c x x c c c c c 0  (29) 

where we chose (wisely) TAx c . 
 
 

5) In the previous problem, we wanted to show ker kerTA A A , the easy part of 
which was showing ker kerTA A A , the hard part of which showing 
ker kerTA A A , i.e. showing 1 1

T
nx mxA A A  x 0 x 0 . If fact there we punted a 

bit: we used ker TA and colA are orthogonal compliments, the excruciating part of 
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which—namely showing  ker colTA A

 —I left as an extra credit problem. But 

there is a rather easy way to get 
 
 1 1

T
nx mxA A A  x 0 x 0  (30) 

 
directly: start on the left of (30) and try to get to the right of (30) by taking the 
inner product of both sides of the left of (30) with x . Mark, get set, go.  

    
 
15pts 
 
Solution 
 
Following the hint, we find 
 

 
 1 1

2

1

0

.

TT T T T
nx nx

mx

A A A A A A A A A A

A A

         

  

x 0 x 0 x x x x x x x x

x x 0
 (31) 

 
 

6) Let : n nT   be linear. Recall the definition of the matrix  SS
T for  T with 

respect to basis S (of n ): for all nv  the matrix  SS
T should satisfy  

  
        ,

SSSS
T Tv v  (32) 

 
where   

S
T v  and  S

v denote the coordinate vectors of, respectively,  T v   

and v with respect to basis S (written as column vectors). Show that if 

 1, , nS  v v , then 

 

                1 1n nS SSS SS SS S S
T T I T T T       v v v v   (33) 

 
and then, harder, 
 

            
1

1 1 ,n nS SSS S S
T T T

      e e e e   (34) 

 
for standard basis  1, , nE  e e of n , and finally 

 

    1 1 1 ,n n nS S
I          v v e e e e    (35) 

 
and 
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          1 1 1 ,n n nS S
T T T T         v v e e e e    (36) 

 
hence 
 

 

   

         

1

1 1

1

1 1 1

and

n nS S

n n nS S
T T T T





      

         

e e v v

e e v v e e

 

  

 (37) 

 
and (34) is actually the very useful statement 
 

      1

1 1 1 .n n nSS
T T T

          v v e e v v    (38) 

  
  

15pts 
 
Solution 
 

First, since  1, , nS  v v , then clearly    1 1n nS S
I       v v e e  , and, so, from 

definition (32) and the way matrix multiplication works, in (33) one finds 
 

 
                 

     
1 1

1

n nS S S SSS SS SS SS SS

nS S

T T I T T T

T T

       
   

v v v v

v v

 


 (39) 

 
as advertized. Likewise 
 

 

                   

           

1 1 1

1

1 1

n n nS S S SSS SS SS S S

n nS SSS S S

T T T T T

T T T


          


      

e e e e e e

e e e e

  

 

 (40) 

 
which is  (34). For (35) and (36) note that, by definition of coordinate vector, 
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1 1 1 1 1

1

1 1 1 1 1

1

,  and

.

n n n n nS S S S

n

n n n n nS S S S

n

I

T T T T

T T

                
    

                 
   

v v e e v v e v v e

e e

v v e e v v e v v e

e e

    



    



(41) 

 
Hence from (41) we get 
 

 

       

         

         

1

1 1 1 1

1 1 1

1

1 1 1

 and

,

n n n nS S S S

n n nS S

n n nS S

I

T T T T

T T T T





               
         



         

v v e e e e v v

v v e e e e

e e v v e e

   

  

  

 (42) 

 
which is (37), and using this in (40) we get 
 

 
           

   

1

1 1

1

1 1 1 ,

n nS SSS S S

n n n

T T T

T T





      

         

e e e e

v v e e v v

 

  
 (43) 

 
which is (38). 
 
 

7) In the previous problem, note from (33) that for standard basis  1, , nE  e e of 
n , we get  

 

            1 1 .n nEE E E
T T T T T       e e e e   (44) 

 
So, using the results above, show that  det : det

SS
T T is well defined, i.e. show you get 

the same result irrespective of basis  1, , nS  v v . 

 
15pts 
 
Solution 
 
From (38) we see 
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1

1 1 1

1

1 1 1

1

1 1 1

1

1 1 1

1 1

det det

det det det

det det det

det det

det det det det

n n nSS

n n n

n n n

n n n

n n

T T T

T T

T T

T T

I T T T T T









         

         

          

          

        

v v e e v v

v v e e v v

v v v v e e

v v v v e e

e e e e

  

  

  

  

  .
EE

 (45) 

 
the latter independent of S . 
 
 

8) Let 
0

A B
M

C

 
  
 

, where A and C are square matrices. Show  

 
 det det detM A C  (46) 
 
15pts 
 
Solution 
 
We can compute det M by doing row reduction on it until it is perfectly upper triangular, 
using then that the determinant of such is the product of the diagonal entries. (Any row 
echelon form of a square matrix is upper triangular.) In order to get a unique result, do 
row reduction to reduced row echelon form. So if we get the row reduced matrix of M of 
the form 
 

 
0M

A B
U

C

  
   

 (47) 

 
with, then, MU perfectly upper triangular, clearly Aand Cwill have to be this way too, 

and in such case we certainly get 
 
 det det det .MU A C   (48) 

 
Now since A and C can certainly be put into upper triangular forms AU and BU by finite 

sequences of row operations, then there exists elementary matrices 1, , mE E and 

1 , , nE E  such that 

 

 1 1,      A m C nU E E A U E E C     (49) 

So then note that 
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1 1

1 1

1 1 1

1

0 00 00 0 0 0

0 0 0 0 00 00 0

00

.
0

m m

n n

m m A m

Cn

M

I II IE E E E A B
M

I I I I CE EE E

E E A E E B U E E B

UE E C

A B
U

C

              
                                       
   

         
  

   

   

  



 (50) 
 
where we used (47), specifically its uniqueness. So by (47)/(48) (and a result similar to 
(47)/(48)) we get 
 
 

1 1 1 1

1

1

1 1

0 0 0 0
det det det det

0 0 0 0

0 0 0 0
det

0 00 0

det det det det

det

n m n m

m

n

m n

n

I I I I
E E E E M E E E E M

I I I I

I I E E
M

I IE E

A C E E A E E C

E

                                           
      

                  
   



   

 

 

1 1det det det

det det det .

mE E E A C

M A C






 

 (51) 
 
Here we used the lemma that the determinant of a row operation on a matrix is the 
product of the determinant of the elementary matrix corresponding to that row operation 
and the determinant of said matrix (and the determinant of the product of matrices is the 
product of the determinants): for example 
 

 
0 0

det det det det 1 det .
0 0n n n n

I I
E E E E

I I

                   
 (52) 

 
 

9) The eigenvalues of  
 

 

1 2 2

1 0 2

1 3 5

A

 
   
   

 (53) 
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are 1,2,  and 3 . Compute the eigenspaces associated to each of these eigenvalues. 
(Recall eigenspaces are subspaces, hence specified as the span of a basis.) 
 

15pts 
 
Solution 

 
We have 
 

 

   

   

1

2

0 2 2 0 1 1 1 0 1

ker 1 ker 1 1 2 ker 1 1 2 ker 0 1 1

1 3 4 0 2 2 0 0 0

1

span 1 ,

1

1 2 2 1 2 2 1 0 0

ker 2 ker 1 2 2 ker 0 1 1 ker 0 1 1

1 3 3 0 0 0 0 0 0

E A I A

E A I A

       
                 
           

  
     
    

      
               
         

   3

0

span 1 ,

1

2 2 2 2 2 2 2 0 1

ker 3 ker 1 3 2 ker 0 2 1 ker 0 2 1

1 3 2 0 0 0 0 0 0

1

span 1 .

2

E A I A





  
     
    

       
                 
          

  
     
    

 (54) 

  
 

 
10) For k any positive integer, compute  

 

 

1 2 2

1 0 2 .

1 3 5

k 
  
   

 (55) 

You may use that 
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1 0 1  1 0 0 1 0 0  1 1 1

1 1 1  0 1 0 0 1 0  1 1 0

1 1 2  0 0 1 0 0 1  0 1 1

   
      
      

  (56) 

 
i.e., that the two matrices in (56) are row equivalent. 

 
 

15pts 
 
Solution 
 
If square matrix A is diagonalizable, then we can write 
 

 

 1 1

1 1
1 1

0 0

0 0

kk k

k k

k
n n

A SDS SD S

S S S S

 

 

 

 

 

  
      
     

 
 (57) 

 
where  S ’s columns are eigenvectors of A . A will certainly be diagonalizable of all the 
eigenvalues 1, , n  are distinct, which, by the previous problem, is what occurs for the 

matrix of (55). And by the results of that previous problem, we can take 
 

 1

1 0 1 1 1 1

1 1 1 1 1 0 ,

1 1 2 0 1 1

S S 

   
         
      

 (58) 

 
where we used (56). So then by (57) we have 
 

 

1
1

0 1 0 1 1 0 0 1 1 1

1 1 1 0 2 0 1 1 0

0 1 1 2 0 0 3 0 1 1

1 0 1 1 0 0 1 1 1

1 1 1 0 2 0 1 1 0

1 1 2 0 0 3 0 1 1

1 0 3 1 1 1

1 2 3 1 1 0

1 2 2 3 0 1 1

k k

k k

k
n

k

k

k

k k

k k

A S S







       
              
            
     

           
          
   
       
     



1 1 3 3 1

1 2 1 2 3 3 1 .

1 2 1 2 2 3 2 3 1

k k

k k k k

k k k k

  
      
        

 (59) 


