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Math 313 Midterm II KEY 
Winter 2011 
section 003 

Instructor: Scott Glasgow 
 

Write your name very clearly on this exam. In this booklet, write 
your mathematics clearly, legibly, in big fonts, and, most important, 
“have a point”, i.e. make your work logically and even pedagogically 
acceptable. (Other human beings not already understanding 313 
should be able to learn from your exam.) To avoid excessive erasing, 
first put your ideas together on scratch paper, then commit the 
logically acceptable fraction of your scratchings to this exam booklet. 
More is not necessarily better: say what you mean and mean what 
you say.  

 
Honor Code: After I have learned of the contents of this exam by any 
means, I will not disclose to anyone any of these contents by any 
means until after the exam has closed. My signature below indicates I 
accept this obligation. 

 
Signature: 
 

(Exams without this signature will not be graded.) 
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1) Consider the following set S of vectors in 4 . Explain why S is linearly 
dependent without doing any calculations. Next, give a basis for the subspace 

Span W S and use this basis for W to express one of the vectors in S as a linear 
combination of others in S . (No fair saying a vector is 1 times itself.) Finally, 
what is the dimension of Span W S ? 

 

 

1 1 2 1 1

1 0 3 3 1
, , , ,

2 2 4 2 2

0 1 1 2 1

S

          
          
                                           

 (1) 

 
You may use the fact that 
 

 

1 1 2 1 1

1 0 3 3 1
: :

2 2 4 2 2

1 0 3 3 0

0 1 1 2 0

0 0 0 0

0 1 1 2 1

1

0 0 0 0 0

A B

   
   
    
   
       

 
 , (2) 

 
where the tilde ( ) indicates “row equivalent to”. 

 
15pts 
 
Solution 
 
S is 5 vectors from 4 , so since 45 4 dim   , theorem, S is dependent. Next, 
since B is in reduced row echelon form, its pivot columns (clearly) define a basis for its 
column space, all other columns linear combinations then of these special columns. These 
pivot columns are its first, second and fifth. And since, theorem, row reduction does not 
alter the linear relationships among columns of a matrix, the associated columns of A are 
a basis for the column space of A : the first, second and fifth columns of A give a basis 
for the column space of A .  So since these columns are the first, second and fifth 
elements of S , it must be that the first, second and fifth elements of S are a basis for 

Span W S : a basis for Span W S is the set 
 

 

1 1 1

1 0 1
, , .

2 2 2

0 1 1

S

      
      
                           

 (3) 

 
Here we see then that dim dimSpan dimSpan 3W S S S     , which answers the 

last question.  
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With the theory just presented, we have that since 
 

  1 2 3 4 5

1 0 3 3 0

0 1 1 2 0

0 0 0 0 1

0 0

:

0 0 0

 
 
 
 










b b b b b  (4) 

gives 
 
        3 1 2 1 2 4 1 2 1 23 3 ,   1 3 2 ,23        b b b b b b b b b b  (5) 

 
it must be that 
 

 

2 1 1 1 1 1

3 1 0 3 1 0
3 ,   3 2 ,

4 2 2 2 2 2

1 0 1 2 0 1

           
           
              
           
                       

 (6) 

 
either one of which two statements answering then the second question. 
 
 

2) Determine bases for both the image and kernel of (left multiplication by) A , 
where 

 

 

1 1 2 1 1

1 0 3 3 1
: .

2 2 4 2 2

0 1 1 2 1

A

 
 
 
 
   

 (7) 

15 points 
 
Solution 
 
Since, by definition of matrix multiplication (from the left), 

 

 
 

 

1

1 1 1 1

1 1 1

Span , ,

: : , , ,

n n n n

n

n n n

x

A x x

x

x x x x

 
         
  

  

x c c c c c c

c c

   

  

 (8) 

 
then clearly the image of Ax x is the column space of A . So from the previous 
problem we have that a basis for the image of (left multiplication by) A is 
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1 1 1

1 0 1
, , .

2 2 2

0 1 1

S

      
      
                           

 (9) 

 
Now the kernel of (left multiplication by) A is unaltered by row reduction (row reduction 
does not change the solution space of a system of equations—which is why we use it to 
solve them), so the kernel of A is the kernel of B in problem 1), the latter exposed by 

realizing that the structure of B there dictates that for  1 5, , ker
T

x x B x  we have 

 

1 3 4 2 3 4 5

1 3 4

2 3 4

5

3 3 0 2 0

3 3

2

0,

x x x x x x x

x x x

x x x

x

       

  
 



 (10) 

i.e., 

 

1 3 4

2 3 4

3 3 43

4 4

5

3 3 3 3 3 3

2 1 2 1 2

Span , :Span ,1 0 1 0

0 1 0 1

0 0 0 0 0

x x x

x x x

x x x Sx

x x

x

                  
                                            

            
                                    

x  (11) 

 
where then S  , which is clearly linearly independent, is a basis for the kernel A . 
 

3) Find the standard matrix for the following linear operator on 3 : A rotation of 
180 counter clockwise about the z axis, followed by a rotation of 90 counter 
clockwise about the y axis, followed by a rotation of 270 counter clockwise 
about the x axis.  

 
15pts 
 
Solution 
 
By theorem we have that for linear operator 3 3:T    
 

        
1 0 0

ˆ ˆ ˆ 0 1 0

0 0 1

T T x T y T z T T T

      
                 

            

 (12) 
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Now  ˆ 1,0,0
T

x  is sent to  ˆ 1,0,0
T

x   by the 180 counter clockwise rotation about 

the z axis, and the rotation of 90 counter clockwise about the y axis sends it 

to  ˆ 0,0,1
T

z  , and then the rotation of 270 counter clockwise about the x axis sends this 

to  ˆ 0,1,0
T

y  . Similarly,  ˆ 0,1,0
T

y  is changed to  ˆ 0, 1,0
T

y   by the 180 counter 

clockwise rotation about the z axis, and the latter is unchanged by a rotation about the 

y axis, which then goes to  ˆ 0,0,1
T

z  via a rotation of 270 counter clockwise about the 

x axis. Finally  ˆ 0,0,1
T

z  is unchanged by a rotation about its axis, which then is 

changed to  ˆ 1,0,0
T

x  by a rotation of 90 counter clockwise about the y axis, which 

then is fixed by any rotation by that axis. Thus, 

        
0 0 1

ˆ ˆ ˆ ˆˆ ˆ 1 0 0 .

0 1 0

T T x T y T z y z x

 
          
  

 (13) 

If these operations are composed in the opposite order, one would get the matrix 
 

 

0 1 0

0 0 1 ,

1 0 0

 
  
  

 

 
which is incorrect. 
 

4) Let :T V W be a linear mapping from real vector space V to real vector space 
W . DENOTE THE ADDITION IN V by V , and DENOTE THE ADDITION 

IN W by W (since they are not in general the same). Likewise, DENOTE 

SCALAR MULTIPLICATION IN V as in Vk v , and DENOTE SCALAR 

MULTIPLICATION IN W as in Wk w (since they are not in general the same). 

With this way of denoting things, carefully write down the implication defining 
the linearity of T . That is, fill in the “blanks” in the following:  :T V W is 
“linear” iff 

 
 1 2.S S  (14) 

 
(Carefully/correctly fill in statement 1S and statement 2S above, using the two 

distinct notations for addition and scalar multiplication in the two different real 
vector spaces V and W . If we weren’t being too terribly careful about 
distinguishing notions of addition and notions of scalar multiplication we would 
simply write (14) as 

 
      , , ,V T T T          u v u v u v . (15) 
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So modify (15) somewhat to be more careful about these things.) 

 
15pts 
 
Solution 
 
Linearity for a map between real vector spaces is 
 
           , , , .V V V W W WV T T T          u v u v u v      (16) 

 
Here we have been careful to indicate order of operations as well: V , for example, must 

be done AFTER the indicated scalar multiplications are formed.  
 
 

5) Let  :T V W be defined by formula 
 
   : ,xT x e  (17) 

where 1V    (the vector space of real numbers, addition ordinary, scalar 
multiplication ordinary: :Vx y x y   ,  on the right the ordinary “grade school” thing, 

: :V x x x     , on the right the ordinary grade school thing), but where 

 : 0W w w  (the set of positive numbers) and addition and scalar multiplication are 

defined (strangely) in W by : :Wv w vw v w    ( indicates ordinary multiplication) and 

by :W w w  (which is raising w to power  ).  (We showed this set and notions of 

addition and scalar multiplication make a vector space.) Show that T defined by (17) is 
linear given the interesting/strange notion of addition and scalar multiplication in W (and 
the ordinary one in V ). [This is interesting because (17) defines a nonlinear map 
between V and itself.] Note that the previous problem sets you up to think about this 
carefully. 
 
15pts 
 
Solution 
 
Linearity is (16), which we attempt to show: by definition of V , , Vu v iff 

,x y u v for ,x y . And by definitions of addition and scalar multiplication in the 

various vector spaces, together with defining formula (17), we have 
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     

    
      

1

scalar multiplication vector addition

, , , by vector space closure under these operations ,

so that  is well defined, and then specifically implies

: :

V V V

V V V

V V V V

x y x y V

T x y

T x y T x y T

   

 

    

     



   

    

 

   

             

           

properties of the
 exponentialdefinition of vector addition

scalar multiplication definition of 

: exp exp exp : exp exp

: exp exp : ,

T

W

T

W W W W W W

x y

x y x y x y

x y T x T y

   



 

   



    

      

 (18) 
i.e., 
 
           , , , ,V V V W W WV T T T          u v u v u v     (19) 

 
which is linearity (16). 
 
 

6) Let :T V W be linear (V and W finite dimensional vector spaces).  Recall 
 
   Im : :  for some T W T V   w w v v  (20) 

 
is a subspace of W (hence nonempty, closed under linear combination). Assuming 

 Im WT  z ( Wz denotes the additive identity in W ), we get dim Im 1T  (and 

dim Im dimT W   ), and by previous theorem get that ImT has a basis 

 1, , mw w with, as indicated, 1m   (and dimm W   ). (Note 1m  means here that 

the set is not empty.) Since each of these w ’s is in the image of T , as per (20), each one 
of them is a “T of something”: there exist 1, , m Vv v such that 

      1 1, , , ,m mT Tw w v v  . So     1 , , mT Tv v is a basis for ImT , hence 

linearly independent, etc. Show that the set  1, , mv v is also linearly independent. 

 
15pts 
 
Solution 
 
Since a basis     1 , , mT Tv v is independent, we certainly have 

 
    1 1 1 0.m m W mk T k T k k      v v z   (21) 

 
We are hoping that this implication implies the implication 
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 1 1 1 0m m V mk k k k      v v z  , (22) 

 
so that  1, , mv v is also independent. So we start on the left-hand side of (22) and see if 

we can pass to the right hand side of (22) using (21) and the linearity of T . This is no 
problem: 

 

   

   

do the same thing to
both sides of an equation  linear

1 1 1 1

 linear

1 1

1 0

T

m m V m m V W

T

m m W

m

k k T k k T

k T k T

k k

       

   

   



v v z v v z z

v v z

 




 (23) 

 
the last step by the given independence statement (21).   
 
 

7) As above assume :T V W is linear, V and W finite dimensional vector spaces. 
Recall 

 
   ker : : WT V T  v v z  (24) 

 
is a subspace of V , hence dim ker dimT V   , i.e the kernel of T is finite 
dimensional (and no bigger than that of V ).  Now, similar to the last problem, 
assume  ker VT  z ( Vz denotes the additive identity in V ), so that there is a 

basis for kerT : assume a basis  1, , nu u for the kernel of T , with, as indicated, 

1n  (and dimn V   ).  (Note 1n  means here that the set is not empty.)  
Forgetting these kernel ideas for a moment, and using the basis 

    1 , , mT Tv v of ImT  introduced in the previous problem, we see that for 

every Vv there are scalars 1, , ma a such that 

 
      1 1 .m mT a T a T  v v v  (25) 

 
Using T ’s linearity and the vector space axioms we see that (25) is equivalent to 
 

   1 1 .m m WT a a   v v v z  (26) 

 
 So then show that 
 
  1 1Span , , , , , .m nV  v v u u   (27) 

 
 Finally, show that  1 1, , , , ,m nv v u u  is linearly independent, hence show that 

 
 dim dim Im dim kerV T T  . (28) 
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[(28) is the “dimension theorem”, which can be used in subsequent problems. It 
works even if one or more of the indicated dimensions are zero, which we 
precluded in deriving it. It even works if dim 0V  , but in that particular case, 
since dim Im ,dim ker 0T T  , we must have dim Im dim ker 0 dimT T V   , 
the former statement giving that T is the zero map (it kills “everything”), and this 
despite the fact that the second statement says that it only kills zero. You can 
thank me later for handing this theorem to you—instead of asking that you 
remember it.) 
 

15pts 
 
Solution 
 
We want to show (27), which says both a) for every Vv there are scalars 

1 1, , , , ,m na a c c  such that 

 
 1 1 1 1 ,m m n na a c c     v v v u u   (29) 

 
(so that  
 

 
 

 
1 1

1 1 1 1 1 1

Span , , , , ,

: : , , , , ,   or ,

m n

m m n n m n

V

a a c c a a c c

  

      

v v v v u u

v v u u

 

     
 (30) 

 
i.e., so that  1 1Span , , , , ,m nV  v v u u  ) and also says b) for every list of scalars 

1 1, , , , ,m na a c c  , the right hand side of (29) is an element of V (so that 

 1 1Span , , , , ,m nV  v v u u  ).  b) is easy: since  V is a vector space, and since 

1 1, , , , ,m nv v u u  are all elements of V , then, by closure of vector spaces under linear 

combination, every object of the form of the right hand side of (29) is also an element of 
V .  a) is harder. It comes from (26), which, given the definition of kernel, says 
 
  1 1 ker .m ma a T   v v v  (31) 

 
Since kerT has basis  1, , nu u , we have 

 
    1 1 1 1ker Span , , : : , ,   or ,n n n nT c c c c    u u u u      (32) 

 
and (31) indicates then that for every Vv there are scalars 1, , nc c such that 

 
  1 1 1 1 ,m m n na a c c     v v v u u   (33) 
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which is equivalent to the claim associated with (29) after using the vector space axioms 
to move the v ’s from one side of the  to the other side: We have just shown (27). 
 
We now want to show that  1 1, , , , ,m nv v u u  is linearly independent, i.e. show that 

 
 1 1 1 1 1 1 0.m m n n V m na a c c a a c c            v v u u z     (34) 

 
So we start on the left hand side of (34) and try to find a path to the right hand side, given 
that a)  1, , mv v is linearly independent, b)  1, , nu u is linearly independent and 

spans the kernel of T , and c) that     1 , , mT Tv v is linearly independent and spans 

the image of T . Perhaps we will only use some of these facts at this late stage. Let’s see. 
 
Applying linear :T V W to the left hand side of (34) we get 
 

 
         

1 1 1 1

1 1 1 1

m m n n V

m m n n V W

a a c c

a T a T c T c T T

      

      

v v u u z

v v u u z z

 
 

 (35) 

 
Then using that each of the u ’s is in the kernel of T , that scalar multiples of the additive 
identity Wz  give Wz  , that sums of Wz give Wz , and that Wz  “does nothing” to anything 

in W , we get (35) becomes 
 

 
   

1 1 1 1

1 1 .
m m n n V

m m W

a a c c

a T a T

      

  

v v u u z

v v z

 


 (36) 

 
But since     1 , , mT Tv v is linearly independent, we have 

 

 
   

1 1 1 1

1 1 1 0,
m m n n V

m m W m

a a c c

a T a T a a

      

      

v v u u z

v v z

 
 

 (37) 

i.e., in short, 
 
 1 1 1 1 1 0.m m n n V ma a c c a a         v v u u z    (38) 

 
But since a statement implies itself, we could also write this as 
 

 
1 1 1 1

1 1 1 1 1

1 1 1

, 0

, 0,

m m n n V

m m n n V m

n n V m

a a c c

a a c c a a

c c a a

      
         
     

v v u u z

v v u u z

u u z

 
  
 

 (39) 
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the last implication following by the fact that the zero multiple of anything in V is Vz , 

that sums of Vz give Vz , and/or that Vz does nothing to anything in V . But then since 

 1, , nu u is independent, we then have 

 

 1 1 1 1 1 1 1

1 1

, 0

0 ,
m m n n V n n V m

m m

a a c c c c a a

a a c c

            
      

v v u u z u u z   
 

 (40) 

  
i.e., 
 
 1 1 1 1 1 10m m n n V m ma a c c a a c c            v v u u z     (41) 

 
which is the same as (34).  
 
So now with  1 1, , , , ,m nv v u u  linearly independent (which implies all nonempty 

subsets are independent, including the important ones we’ve thought about recently) and 
with (27), we have 
 

 

   
       

   

1 1 1 1

1 1 1 1

1 1

dim dimSpan , , , , , , , , , ,

, , , , ( ), , ( ) , ,

dimSpan ( ), , ( ) dimSpan , ,

dim Im dim ker ,

m n m n

m n m n

m n

V m n

T T

T T

T T

   

   

 

 

v v u u v v u u

v v u u v v u u

v v u u

   

   

 
 (42) 

 
which is the desired (28), i.e. the dimension theorem. In (42) we also used 

 1( ), , ( )mT Tv v is linearly independent. 

 
  

8) Explain why it is that if A is a (real) m n matrix with n m ( 1 ), then the 
kernel of A , i.e. 
 

  ker : : ,n mA A   x x 0   (43) 

 

can’t just be the zero vector. (That is, show that  ker nA  0  ). Hint: use the 

dimension theorem.  (Aren’t you glad I reminded you of that?) 
 

15pts 
 
Solution 
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Let : n mT   be defined by ( )T Ax x , so that T is a linear map from a finite 
dimensional vector space to another one, and so that ker kerA T . The dimension 
theorem (28) in this context says that 
 
 dim dim Im dim ker dim Im dim ker dim ker .n V T T T A m A        (44) 
 
Here we also used that ImT is a subspace of m , so that dim Im dim mT m  . So 
then with 1n m n m    [since these are (nonnegative) integers], from (44) we have 
 
 dim ker 1 dim ker 1A n m A      (45) 
 

and ker A can’t be  n0  (which we say has dimension 0 ).  

 
9) If W is a subspace of a finite dimensional vector space V , show that if 

dim dimW V , then in fact W V , i.e. both W V and, more interesting/telling, 
W V also. [I’ll do the first part for you: the definition of subspace is that it is 
(first and foremost) a (nonempty) subset, hence W V . So now move on to show 
W V .] 

 
15pts 
 
Solution 
 
To show W V , we must show that every vector v in V is also in W . Now W and V are 
both finite dimensional vector spaces (in fact W has the same dimension as V does, 
which is finite), and, so, both have bases provided  VV  z ; write  1, , nw w in the case 

of W ( V ),  1, , nv v in the case of V , with  1, 2,n   . (If  VV  z , so that 

dim 0V  and V does not have a basis, then, since W V and  W   , then 

 VW V z and we have our result.) Here we have used the same cardinality 

dim dimn V W  . (  1, 2,n   )So since 

 
    1 1 1 1Span , , : : , ,  scalars ,n n n nW c c c c   w w w w    (46) 

 
it becomes our goal to show that for every Vv there are scalars 1, , nc c such that 

 
 1 1 .n nc c  v w w  (47) 

 
Suppose this were not the case, i.e. that for at least one particular/special special V v v , 

we have specialv cannot be written as on the right hand side of (47), i.e. cannot be written as 

a linear combination of the w ’s. (Clearly special V W  v z z z  since we could then use 

zero scalars.) Then since  1, , nw w is a linearly independent set of vectors in W hence 
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in V , the set  1 special, , ,nw w v would be a linearly independent set of vectors in V . But 

this last occurrence is impossible: it is impossible to have a linearly independent set of 
vectors with cardinality 1n  in an n dimensional vector space. Thus every vector Vv is 
of the form indicated in (47) and W V . Combined with W V  we have then W V . 
 
Here we used a couple of big guns/theorems. Alternatively we could a) describe why 

 1 special, , ,nw w v is linearly independent (suppose it isn’t and get contradiction with 

specialv is not of the form (47) yet  1, , nw w is independent), and then b) describe why it 

is impossible to have a set of 1n  linearly independent vectors in an n dimensional space 
(suppose you could and use the basis with only n elements and find a nontrivial solution 
to the relevant “independence equation”).    
 
 

10) Let  1, , nb b be a set of 1n  vectors in a real innerproduct space, and construct 

a real matrix n nG G  of inner products of these b ’s as follows: 

 

 : , .ij i jG  b b  (48) 

 
Show that the set of vectors  1, , nb b is linearly independent if and only if 

RankG n , i.e., using the dimension theorem, if and only if 

 nullity : dim ker 0G G  (i.e. if and only if G   x 0 x 0 ). (I am making life 

easiest on you in writing the last statement.)  
 

15pts 
 
Solution 
 
We have  1, , nb b is linearly independent if and only if 

 

 1 1 1
1

0.
n

j j n n n
j

x x x x x


        b b b z   (49) 

 
Now the first statement here implies that for  1, ,i n   

 

  
1 1 1 1

, , : , 0.
n n n n

i j j j i j j ij ij j ii
j j j j

x x x G G x G
   

        b b b b x b z  (50) 

 
Here we used the linearity axiom(s) of the real inner product. So we have shown 
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      
1 1

1, , , 1, , , , 0.
n n

j j i j j i
j j

i n x i n x G
 

      b z b b x   (51) 

 
Now start on the right hand side of (51). Using the linearity of the inner product we find 
this right hand side implies 
 

 
1 1

0 0 , ,
n n

i i i j j i i j j
j j

x x x x x
 

    b b b b  (52) 

for each i , and then 
 

 
1 1 1 1 1 1 1

0 0 , , ,
n n n n n n n

i i j j i i j j j j j j
i i j i j j j

x x x x x x
      

         b b b b b b  (53) 

 
using linearity of the inner product again, and then changing the name of the dummy 
variable of summation in the last step (to make it more obvious we are taking an inner 
product of a vector with itself). But since innerproduct , is positive, (53) implies 

 

 
1

n

j j
j

x


 b z  (54) 

 
which is the (main part of) left hand side of (51). So we have just shown that if , really 

is an innerproduct, then 
 

    
definition of zero
 vector in 

1

0 for 1, , .
nn

j j i
j

x G i n G


      b z x x 0


  (55) 

 
Thus from (49) we have 
 
    1 1 1 10 0 ,n n n nx x x x G x x            b b z x 0    (56) 

 
i.e., 
 
    1 1 1 0 .n n nx x x x G          b b z x 0 x 0   (57) 

 
(57) says 
 
    1, ,  is linearly independent iff kern G b b 0  (58) 

 
which was to be shown (in the last/easiest version of the problem statement). 


