
Math 313 Midterm I KEY 
Winter 2011 
section 003 

Instructor: Scott Glasgow 
 

Write your name very clearly on this exam. In this booklet, write 
your mathematics clearly, legibly, in big fonts, and, most important, 
“have a point”, i.e. make your work logically and even pedagogically 
acceptable. (Other human beings not already understanding 313 
should be able to learn from your exam.) To avoid excessive erasing, 
first put your ideas together on scratch paper, then commit the 
logically acceptable fraction of your scratchings to this exam booklet. 
More is not necessarily better: say what you mean and mean what 
you say.  

 
Honor Code: After I have learned of the contents of this exam by any 
means, I will not disclose to anyone any of these contents by any 
means until after the exam has closed. My signature below indicates I 
accept this obligation. 

 
Signature: 
 

(Exams without this signature will not be graded.) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1) True or False: the product TA A is always well-defined (for any size matrix A ). 
Justify you answer. 

 
5pts 
 
Solution  
 

True: the number of columns of the matrix on the left will always be the same as the 
number of rows of the matrix on the right, which is the only criterion that must be met 
to form the product. 
 

 
2) Put the following matrix in reduced row-echelon form 

 

 

1 1 1 1

1 1 1 1

4 2 1 4

 
   
  

 (1) 

 
10pts 
 
Solution  
 
The row reduction may proceed as follows: 
  

 

2 1 2/( 2)
3 2 2

3 4 1 3/( 3)

1 3 1 2

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 2 0 2 0 1 0 1

4 2 1 4 0 6 3 0 0 2 1 0

1 1 1 1 1 1 0 3 1 0 0 2

0 1 0 1 0 1 0 1 0 1 0 1 .

0 0 1 2 0 0 1 2 0 0 1 2

R R R
R R

R R R

R R R R

 


 

 

     
             
            

     
     
     
            

 

  

 (2) 

 
However the row reduction proceeds, the row echelon form is unique—the last matrix 
indicated in (2) is the answer.  
 
 

3) Solve the following system of 2 equations and 2 unknowns by performing Gauss-
Jordon elimination on the relevant augmented matrix. 

 

 
3,

2 5.

x y

x y

 
 

 (3) 

5pts 
 



Solution  
 
The augmented matrix and its row reduction appear below: 
 

 
2 1 1 21 1 3 1 1 3 1 0 1

1 2 5 0 1 2 0 1 2

R R R R      
     
     

  . (4) 

 
Thus the solution to (3) is    , 1, 2x y  . 

 
 

4) Assuming A and B are invertible matrices of the same size, show that  
 

   1 1 1.AB B A
    (5) 

 
10 points 
 
 
Solution 
 

1 1B A   is the inverse of AB 1 if and only if  
 

        1 1 1 1 ,AB B A B A AB I      (6) 

 
to whit we first note that, by the associative property of matrix multiplication,  
 

 

     

     

1 1 1 1

1 1 1 1

and

.

AB B A A BB A

B A AB B A A B

   

   





 (7) 

 
Then, by the definition of the inverses, in particular that an inverse is both a right and a 
left inverse, we have, respectively, that  
 

 

       

       

1 1 1 1 1

1 1 1 1 1

and

.

AB B A A BB A AI A

B A AB B A A B B I B

    

    

 

 

 (8) 

 
Using now the fact that the identity matrix is in fact the “multiplicative identity” from 
either side we get   
                                                 
1 Here we used the definite article “the”, as in “the inverse”, since it can be shown that all such indicated 
inverses are the same. 



 

 

    

    

1 1 1 1

1 1 1 1

and

.

AB B A AI A AA

B A AB B I B B B

   

   

 

 

 (9) 

 
Finally we use again the definition of the inverses. In particular, using that an inverse is 
both a right and a left inverse, we have, respectively, that    
 

 

   

   

1 1 1

1 1 1

and

,

AB B A AA I

B A AB B B I

  

  

 

 

 (10) 

 
which is the required (6).  
 
 

5) Show that if a matrix A is invertible, the system A x b has one and only one 
solution x , namely 1Ax b . Here, as one of you pointed out, it is important to 
note that there is really only one such inverse, i.e. 1A denotes only one object. 
[Warning: there are two things to prove here, namely a) that if the system has a 
solution, then it can only be 1Ax b , and that b) 1Ax b actually does solve the 
system. Here then you will have addressed the “one and only one” issues in 
reverse order: you may first show that a) there is at most one solution, and b) that 
there is in fact one solution (rather than none). In parts a) and b) you will use that 

1A is A ’s left and right inverse, respectively.] 
 
10 points 
 
Solution 
 
If the system has a solution x , then, for any such x , we may certainly write 
 
 A x b  (11) 
 
without implicitly lying, and then, by left application of 1A to (11), as well as by the 
associative property of matrix multiplication, obtain that 
 

    1 1 1I A A A A A     x x x x b . (12) 

 
In (12) we also used that 1A is a left inverse of A , as well as the fact that the so-called 
identity matrix I is in fact a “multiplicative identity”. Here then we have just showed that 
if (11) has a solution, it’s got to be 1Ax b . Thus we have showed that (11) has at most 
one solution. But our demonstration does not yet preclude there being no solution. To 



preclude that possibility, we confirm that, for the only promising candidate, 
namely 1Ax b , we get 
 

    1 1 ,A A A AA I    x b b b b  (13) 

 
so that our candidate was successful. (Here we have used the associative property of 
matrix multiplication, the fact that 1A is a right inverse of A , as well as the fact that the 
so-called identity matrix I is in fact a “multiplicative identity”.) Thus we have showed 
that the system has one and only one solution, namely 1Ax b . 
 
      

6) Assume that both the matrix B and the matrix C are inverses of the matrix A . 
Show that B and C are just two aliases for the same matrix, i.e. show that in 
fact B C . 

  
10 points 
 
 
Solution 
 
The descriptions of B and C demand that 
 
 .AB BA I AC CA     (14) 
 
Using the associative property of matrix multiplication in two different ways on the 
product BAC we get   
 

 

 

 
and

,

BAC B AC BI B

BAC BA C IC C

  

  

 (15) 

 
so that indeed  

 

B BAC C

B C

 



 (16) 

 
as claimed. Note that in (15) we also used that a) C is a right inverse of A , b) B is a left 
inverse of A , and that c) the identity matrix acts as both a right and left multiplicative 
identity. One can alternately approach this problem by considering the product CAB , but 
then by using that a) C is a left inverse of A , b) B is a right inverse of A , and again that 
c) the identity matrix acts as both a right and left multiplicative identity.   
 

7) Find the inverse of the matrix  



 

 
a b

A
c d

 
  
 

 (17) 

 

by row reducing A I    to 1I A   . Assume the parameters , , ,  and a b c d do not take on 

any special values, nor have a special relationship among them—that is row reduce 
naively, without worrying about any divisions by hidden zeros. 
 
 
10 points 
 
Solution 
 
The naïve row reduction mentioned may proceed as follows: 
 

 

 

 

2 1 1 2

1/ 1/

1/

1

1 0 1 0

0 1 0

00

00

1 0 1
.

0 1

aR cR ad bc R bR

R a R a

R a

a b a b
A I

c d ad bc c a

ad ab ad bc d ba ad bc

c a ad bc c aad bc

d b
I A

c aad bc

  



   
           

    
        

           



 



 (18) 

 
8) For the given set of objects, together with the indicated notions of addition and 

scalar multiplication, determine whether each of the ten vector space axioms 
holds: real triples  , ,x y z , where 

 
          , , , , : , , ,    , , : , , .x y z x y z x x y y z z k x y z kx y z            (19) 

 
15pts 
 
Solution  
 

Closure axioms 1) and 6) hold because sums and products of real numbers give real 
numbers, and because on the right hand sides of equation (19) the objects are again 
triples of those real numbers. 2) through 5) will also hold, since they reference only 
vector addition, which in (19) is the standard notion (giving the 10 axioms as 
theorems). For axiom 7) we have 
 



 

         
     
   

, , , , , , , ,

, , , , , ,

 , , , , ,

k x y z x y z k x x y y z z k x x y y z z

kx kx y y z z kx y z kx y z

k x y z k x y z

                

          

   

 (20) 

 
as required. But for axiom 8) we have the generally distinct results 
  

 
       

           
, , , , , , ,  and

, , , , , , , , , , , 2 , 2 ,

k m x y z k m x y z kx mx y z

k x y z m x y z kx y z mx y z kx mx y y z z kx mx y z

    

        
(21) 

 
so that this axiom does not hold. Axioms 9) and 10) hold in an obvious way— 
essentially because the scalar multiplication is normal in the one slot it affects. 
 
9) Prove that for any (real) vector space  , , ,V   (satisfying the ten axioms)—no 

matter how bizarre the addition  and the scalar multiplication   are—we must 
have k z z for any scalar k ( ), where z is the additive identity. Be sure to 
list the axioms used in your proof. Feel free (but not compelled!) to use the fact 
that  
 

 
,  or

,

   
   

w u u w z

u w u w z
 (22) 

 
i.e. that if a vector Vw acts like Vz even for just one Vu , then it is z . On 
the other hand, you may also do what you did in the relevant homework problem 
(which invents this fact for you).                                                         
 

15pts 
 
Solution  
 
By axiom 7)  
   ,k k k  z z z z    (23) 

 
and then by axiom 4) we get then 
 
   .k k k k   z z z z z     (24) 

 
But now this is (22) with kw z (and, less important, ku z ), so k w z z by the last 
parts of (22). 
  

10) By use of the relevant theorem, determine whether the following is a subspace 
of nnM : ( nnM is the vector space of n n matrices with ordinary matrix addition 

and scalar multiplication.) the set of all n n matrices A such that AB BA for 



some fixed/specific/particular n n  matrix B . MAKE SURE AND REFERENCE 
AND USE THE THEOREM in determining your conclusion.   

 
15pts 
 
Solution  
 
Since such A ’s certainly form a non-empty subset of nnM , then, theorem, they form a 

subspace of nnM iff for all scalars c and c and for every A and A in the set we have 

 
    .cA c A B B cA c A       (25) 

 
Now (25) always holds and, so, the set is actually a subspace of nnM : we have 

 
              cA c A B c AB c A B c BA c BA B cA c A               (26) 

by matrix algebra, together with A and A ’s membership in the set (giving both 
AB BA and A B BA  ). 
   
 

11) By use of the relevant theorem, determine whether the following is (always) true 
or (sometimes) false: The intersection 1 2W W of two subspaces 1W and 2W of a 

given vector space V is itself a subspace of V . MAKE SURE AND 
REFERENCE AND USE THE THEOREM in determining your conclusion. 

 
15pts 
 
Solution 
 
Since subspaces are vector spaces and, so, by definition, non-empty, there is a chance that 

1 2W W is non-empty (so that we can apply the theorem mentioned in the previous 

problem). Indeed each of 1W and 2W contain the additive identity Vz , so that in 

fact  1 2W W   z . ( is notation for the empty set.) So let c and c be any two (real) 

scalars, and let u and v be any two vectors in 1 2W W , and in particular consider whether 

the arbitrary linear combination c cu v is in 1 2W W . Well, since u and v are both in 

subspace 1W , then, by closure of vector spaces under linear combinations, 1c c W u v , 

and then since u and v are both in subspace 2W , then, by closure of vector spaces under 

linear combinations, 2.c c W u v Consequently c cu v is in 1 2W W : 1 2W W is a non-

empty subset of V closed under linear combination and, so, is a subspace of V . 
 
 



12)  Determine whether the following is (always) true or (sometimes) false: The set 

 , ,S    u v v w w u is linearly dependent, where u , v , and w are any three 

vectors. If it is true, prove it, otherwise give a counter example. 
 
10pts 
 
Solution  
 
Consider the equation  
 
      1 2 3 .k k k        u v v w w u z  (27) 

 
where z denotes the additive identity in the relevant vector space. By the axioms of a 
vector space, the left-hand side of (27) can be rearranged until we get 
 
      1 3 2 1 3 2 .k k k k k k        u v w z  (28) 

 
Note that choosing 1 2 3 1 0k k k    , we get (by theorem) that (28) hence (27) holds. 

(Of course one could have just seen that (27) itself holds with this choice, by axiom 10 , 
etc.) Thus, definition,  , ,S    u v v w w u is (always) linearly dependent. 

 
 

13)  For , nu v  , prove the triangle inequality   u v u v . Note in your 

calculation the step at which you use the Cauchy-Schwarz inequality. 
 

10 points 
 
Solution 
 

 

   

 

2

2 2

2 2

2 2

2

2

2

2

2            (Cauchy-Schwarz)

.

          

   

   

  

 



  

u v u v u v u u u v v v

u u v v

u u v v

u u v v

u v

u v u v

 (29) 

 
14) Determine whether 

 



  , ,Spanx u v w  (30) 

 
where 
 
 

 

1 1 1 1

1 , 1 , 1 , 1 .

4 2 1 4

       
                   
              

u v w x  (31) 

10 points 
 
 
Solution 
 
In problem 2) we showed that 
  
  2 1 2 , , ,Span   x u v w u v w  (32) 

 
that is 
 

 

1 1 1 1

1 2 1 1 1 2 1 ,

4 4 2 1

       
                  
              

 (33) 

 
so in fact (30) holds. 
  
 

  
 
 
 

 


