Name:

Student ID:

Section: _002

Instructor: Scott Glasgow

Math 314 (Calculus of Several Variables) RED
Exam 3 May 24-28, 2013
Instructions:

e For questions which require a written answer, show all your work. Full credit will be
given only if the necessary work is shown, justifying your answer.

e Simplify your answers.

e Calculators are not allowed. Textbooks are not allowed. Notes are not allowed.

e Should you need more space than is allotted to answer a question, use the back of the
page the problem is on and indicate this fact.

e Talking about the exam with other students before the graded exam is returned to you
is a violation of the Honor Code.



Part I: Multiple Choice Mark the correct answer on the bubble sheet provided.

1. (5 points) Which function has the following level curves?

Fas
.

-2 -1 0

2

a) f(xy)=x+y’ b) f(x,y)=x"+y’ ) f(x,y)=x"+y*
d f(xy)=x+y e) F(xy)=xy f) f(xy)=x"y*
Solution: The answer is c), by elimination of the other impossibilities if nothing else: a) gives

circles, b) allows y ~ —x for large values of those variables, d) gives straight contours, and e)
and f) both give hyperbolae.



2. (5 points) Here are three limits:
3

2

. : Xy - Xy L Xy

i lim i) lim i) lim

(i) (xy)>(0.0) x* + y* () (xy)>(0.0) X* 4 y° ( )( ¥)=(0.0) X* + y°
Which of these limits exist?
a) none of them b) only (i) c) only (ii)
d) only (iii) e) only (i) and (ii) f) only (i) and (iii)
g) only (ii) and (iii) h) all of them

Solution: The correct answer is a):

lim xy(x)? . xz(x) . z(X)+xz'(x) lim 22'(X) + xz"(X)
-0 X2+ y(x)* o0 x24z(x)2 o0 2X+2(X)Z'(X) 0 2+ 2(X)2"(X) + 2'(X)? )
_ 22'(0)+0-2"(0) _ 22'(0) _ 22'(0)
2+12(0)2"(0)+2'(0)> 2+0-2"(0)+z'(0)> 2+12'(0)*
shows the value of the function depends on how the point (0, O) is approached, hence that
limit does not exist. Likewise for the second limit above:
3 '
lim Y i 2200 _22(0) 2)
-0 X+ y(X)” 0 X +2(X) 2+17'(0)
Also the third does not exist:
im—YX) i YOOHXY'(X) V)Y (X) +Xy"(X)
2 2 ' - 1{\2 1"
POXT+Y(X)T 00 2x+2Y(X)Y(X) 20 2+2y'(X)" +2Y(X)y"(X) )
_ 2y(@)+0-y"(0)  _ 2y'(0) __YO
2+2y'(0)>+2y(0)y"(0) 2+2y'(0)>+2-0-y"(0) 1+y'(0)°
3. (5 points) Consider the fact that
z=1(xy)
= (4)

dz = f (x,y)dx+ f (X, y)dy.

This suggests that



a) z-2,=f,(X. Yo) (X=%)+ , (X, ¥o) (¥ — ¥, ) is the equation for the tangent plane of
the surface z = f(x,y) at the point (X, Y,,2,),

b) z-2y= (X, Yo) (X=% )+ f, (X, ¥o) (Y — Yo ) is the equation for the line normal to the
tangent plane of the surface z = f (X, y) at the point (X,, Y5, Z,),

c) z="1.(X Yo)x+ f,(X Y)Y is the equation for the tangent plane of the surface
z = f(x, ) at the point (X,, Yy, Z,),

d) z="1.(X, Yo)X+ f (X Yo)Y is the equation for the line normal to the tangent plane of
the surface z = f(x,y) at the point (X, Y,,2,),

e) z+1zy=f, (X Yo) (X+% )+ f, (X, o) (Y +Y,) is the equation for the tangent plane of
the surface z = f(x,y) at the point (X, Y,,2,),

f) none of the above.

Solution: The correct answer is a).



4. (5 points) Let F(x,Y,2)be differentiable at(X,, Yy, 2, ), and let VF (X,, Yo, Z,) #(0,0,0) .

Then the level surface given by

F(XY.2)=F (X Yo Z) (5)

has a unique tangent plane. Its equation is

a) F (% Y9 Zo)X+F, (X0, Yo Z0) Y+ F, (X9, Y0, 25) 2=0,

b) (X YorZo)Z=F, (X Y0, 2) X+ F, (%0, Y6, 25) ¥

Q) F (X0 Yo Zo)(2+20) = B (%0 Y0r 20) (X + %)+ F, (X9, Yo Zo ) (Y + Yo,

d)  F (X Y0:Zo)(Z=25) = F (X, Y. 2o ) (X=X )+ F, (%01 Yo, 20) (Y = Yo ) »

e) F(%:Yo0:20)(X=%)+F, (%: Y0, 20) (Y= Yo )+ F, (X0, ¥0: 20 )(2-2,) =0 ,

f) none of the above.

Solution: e)

5. (5 points) A function z = f (X, y) is differentiable at a point (a,b)if only

a) (a,b)is in the domain of f,

b) (a,b) is not on the boundary of the domain of f,

c) the partial derivatives f, and fy exist on a small disk centered at (a,b) and are continuous
at (a,b),

d) f is continuous at (a,b),

e) the partial derivatives f,(a,b)and f, (a,b) exist,

f) none of the above.

Solution: c) is a theorem.



Part Il: In the following problems, show all work, and simplify your results.
6. (15 points)
Theorem: For every (X, y) cR? we have
(X +y*) 2 xy? (6)
Proof: We find that
(X2 +y*)® = x*y"? = x +5x%y* +10x°y® + 9x*y*? +5x°y*® + y*° (7)
which clearly can’t be negative.

Use the Theorem above and the squeeze theorem, etc., to prove that the limit

3

. X
lim 2 (8)
(x¥)>(0.0) X* +y
exists, and use those theorems to determine the value of the limit.
Solution: We compute that
3\ 3\ 4,12
o<| tim | = gim [ | = tim =L
(xy)=(0.0) X* +y (x¥)=(0.0){ X +y (x.y)(0.0) (XZ + y4)
4.,12 4,12
= lim Ls(x2+y4): lim LS lim (x*+y*) (9)
(x,y)—(0,0) (XZ + y4) (x,y)—(0,0) (XZ + y4) (x,y)—(0,0)

< lim 1 Iimoo)(x2+y“):(X lim )(x2+y4):02+04:0,

(xy)=(0.0) (x.y)~(0, 1y)—(0.0

whence

3\ 3
im Y | -0 lim X o (10)
(xy)=(0.0) X“ 4y (x¥)=(0.0) X“ +y



7. (10 points) Write out the Chain Rule for the case in which w= f (X, Y, z,t)and each of
X, Y,z and tare (differentiable) functions of variable Uand V. Specifically, determine

the functions A(u,v)and B(u,v)in the differential

dw=A(u,v)du+B(u,v)dv. (11)
Solution: We have
A(U,V): of ig iﬂ ig+iﬂ
ou oOXou oyou o0zZou ot ou (12)

of _of ox 8f8y of oz 8f8t

B(u, 29, 70
(uv)= EY 8X8v 8y8v 828v otov



8. (10 points) Make the definition
g(h) = f(x+ah, y+bh) (13)

and compute g'(0) in terms of any, all, or some of the following numbers:

a,b, F(x,y), £, ¥), £,(%y), £ (6 ¥), £, (% y), £, (6 ), £, (0 Y). (14)

Solution: We have

g'(0) = mwz fjm - (X2, y+bN) = T(%, y) = (D f) % y) = £, (x y)a+f, (x, y)b(

h—0 h

= < f(xy), f, (X, y)>-<a, b) = (Vf)(x,y)-(a,b),

15)

using a biggish theorem. Without that particular theorem we could write more fundamentally
that
g(h) = f(x+ah,y+bh)
=

h h
g!(h)z fX(X+ah,y+bh)%+ fy(x+ah'y+bh)M

= f,(x+ah,y+bh)a+ f (x+ah,y+bh)b, (16)
=

g'(0)=f,(x+a-0,y+b-0)a+ f (x+a-0,y+b-0)b
= f,(x,y)a+ f,(x, y)b,

using the basic theorem about partial derivatives and composed functions, i.e., using a rather
general version of the chain rule.



9. (10 points) Assuming the function F = F(X, Yy, z) has a nonvanishing gradient vector at a

point (X,, ¥y, Z,) on the level surface

F(X1 y,z):k: F(Xo’yovzo)’ (17)

determine an equation giving all points (X, Y, z) on the plane tangent to that level
surface (dictated by (17)) at that point (X,, Y,, Z,) - Why is your equation “information
free” when the gradient vector vanishes at (X,, Y,,Z,) ? In what way does the

information free equation actually make sense?

Solution: From (17) we immediately have that such a tangent plane is given “in the small” by
the differential

0=dk =dF(x,y,z)=F (x,y,z)dx+F (x,y,z)dy + F,(x,y,z)dz (18)
at any given point (X, Y, z) on the level surface, or by
0= F, (X, Yor Zo)dX+ F, (%o, Yo, 2o)dy + F, (X5, Yo, 2,)dz (19)

at the specific point (X,, Y, Z,) in question. “In the large” we have (19) is

0= Fx(xo’yo’zo)(x_xo)"' Fy(xo’yO’Zo)(y_yo)"'Fz(xo’YO’Zo)(Z_Zo) (20)

which is the desired equation. If the gradient vector vanishes at the point in question, then the
equation is 0 =0, which is satisfied by all points (X, Y, z), and which makes sense because
when the gradient vector vanishes, there is no unique tangent plane, all planes are tangent, and
the union of their solution sets is all points in three space.



10. (10 points) Consider the plane dictated by the equation

0=F, (X Yo: 2) (X=X, )+ F, (X5, Yo Z) (Y = Yo ) + F, (%01 Y. Z0) (2— Z,) (21)

Find the line that goes through this plane orthogonally at the point (X,, Y,,Z,) . Use any

valid format to communicate this line unambiguously. What assumption do you have to
make so that your proposed equation(s) for a line actually give a line, not just a point?

Solution: A vector normal to the plane is
Ny = VF(Xov Yoo Zo) = <FX(XO, Yo Zo)v Fy(XO’ Yoo Zo)v FZ(XO’ Yo Zo)> (22)
whence, the vector equation for such a line is

r(t) = I+, :<X0' yO’ZO>+t<Fx(XO7 Yo Zo)' Fy(XO’ yO’ZO)’ FZ(XO’ Yo Zo)>

(23)
= <XO +F, (X501 Yo Zo), Yo +F, (%o, Yo Z9)s Zo +tF, (X5, Yo zo)> teR.

This “line” degenerates to a point iff VF(X,,Y,,2,)=0.



11. (10 points) By using a Lagrange Multiplier, calculate the maximum value of
g(a,b)=f (x,y)a+ fy(x, y)b
subject to the side condition that
a’+b* =1,

Also compute the minimum value of g(a,b) subject to (25). Assume that

< f.(xy), £, (X y)> # <0, O> . What does your computation prove?
Solution: Define
h(a,b):=a*+b = (a,b)|
so that constraint (25) is the equation
h(a,b) =1.
The constrained extrema happen exactly when

{Vg(a,b),vh(a,b)}

(24)

(25)

(26)

(27)

(28)

form a linearly dependent set. (This is equivalent to the actual Lagrange multiplier statement,

but more flexible, as one might notice below.) This happens exactly when a certain obvious
matrix formed from these vectors is singular, i.e., when the following equation holds:

I Va@b)y | 1g.(@b) gyab)l [ f(xy) f(xY)
O_de{vh(a,bf}_det[ha(a,b) hb(a,b)}de{ 2a 2

_ 2de’{ floy) 1, (x y)} ~2(f,(x, y)b- T, (x y)a)
a b
=N
(a,b) e Span{< f(xy),f (x y)>} =Span{Vf (x, y)} ={AVf (x,y)| 1 e R}
=

(a,b) = AVf (x,y),

(29)

the latter for some A € Rto be determined by satisfying the constraint (25). Inserting (29)’s last

result into (25) gives



2

1= e -5t ol =291 (x)
= (30)
1

A=t =
[V ()]

s Ay

For A, :=1/||Vf (%, y)|| we get

g(a,b):=f (x,y)a+ f,(x, y)b=Vf(xy)-(ab)
=V (x,y) A VE(x,y) (31)
1

=2 |vf o) =mnw Y[ =[vE ),

while for 4_:= —1/||Vf (x, y)|| we clearly get

g(a,b) =Vf(x,y)-AVI(x,y)

1 2 (32)
= 2V =~ IVE Gy ==V (% ).
96 =~ o g1 0 I =G
the former then the maximum value, the latter the minimum value. Noting as in (15) that
thm
(D F)(xy) = £, (6 y)a+ £, (x, )b (33)

we have just proved that the maximum value of the directional derivative at a point is the norm
of the gradient vector of the function to be differentiated at said point, the minimum value the
negation of that.



12. (10 points) Consider taking the “second directional derivative” as follows:

(D% f ) ¥)=9"(0), (34)
where
g(h):= f(x+ah, y+bh). (35)

Compute this second directional derivative in terms of any, all, or some of the following
numbers:

a,b, £(x,y), (% ¥), f, (% ¥), . (%, ¥), f. (X, y), £, (X, y), £, (X, ). (36)

It turns out that you can write your final result (with the terms in (36)) as

2 I\/Ill I\/|12 a
(D<a1b>f)(X'y)=[a b]{Mm sz{b} 7

with matrix elements M,;,M,, = M,,,M,, to be determined (by you). Noting that

[ b]{M” Mlﬂ{a}:[a b]{'\"ﬂa”\"ﬂb}a(mna+Mlzb)+b(M21a+M22b)

MZl MZZ b M21a+ M22b (38)
=M,a’ +Mpab+M,ba+M,b*
you see that I've given you the hint that your answer should look like
62 2 2
— f(x+ah,y+bh) =M, a°+M,ab+M,ba+M,,b
on h=0
=Ma* +(My, + M, )ab+M,,b’ (39)

=M,a° +2M,ab + M,,b?,

If g'(0)=0yetg”"(0) >0, then g hasalocal minat h=0. If this is true independent of vector
<a,b> with norm 1, then that means that f has a local min at (X, y). It turns out that g"(0) is
positive independent of normalized (a, b> happens iff both of the eigenvalues of the symmetric
matrix

M M M M
M ::{Mu Mlz}:{'vln Mlz} (40)
21 22 12 2



are positive. But the characteristic polynomial for matrix M is

A-M, -M
0=det(/”tI2X2—M)=de{ H . }=(/1—|v|11)(z—Mzz)—(—Mu)(—Mu)
_MlZ /1_M22

=" =(M;, +M,,) A +detM (41)
=22 =(My;+My,) A+ MM, —M,,%

And from this it’s not hard to show that both eigenvalues are positive if and only if
detM =M M,, - M’ (42)

is positive and so is M, + M,,--in which case f has a local minimum at (X, y). But then the

criteria for both eigenvalues to be positive (hence get a minimum for f ) is also exactly
M,M,,-M,*>0 and M, orM,, >0. (43)

To see (43) as equivalent to (42) positive and M, + M,, positive, note that if M,;, and M, are
nonpostive, we can’t get M, + M, positive, and if only one of them is nonpositive, the product
M,,M,, will be nonpositive, and M,,M,, — M,,” can’t be positive. So ultimately we get that (43)
is a sufficient condition for f to have a local min at (X, y). Once you compute your answer to
the first question, which is equivalent to finding the matrix elementsM,;,M,, =M,,,M,, , tell

me why it is that you could have expected that (43) is sufficient for f to have a minimum.

Solution: From (16) we already have

g'(h) = f,(x+ah,y+bh)a+ f (x+ah,y+bh)b
=

(x+ah)

g"(h):(fxx(x+ah,y+bh)a + f, (x+ah,y+bh)

o(y+bh) )
oh
+( f (x+ah, y+bh)w+ f, (x+ah, y+bh)w1b

=(f (x+ah,y+bh)a+ f(x+ah,y+bh)b)a (44)
+( f,(x+ah,y+bh)a+ f (x+ah,y+bh)b)b

=

9"(0) = (o (x, Y)a+ f, (x, y)o)a+(f, (x y)a+ f, (x y)b)b
= f (x,y)a’ + £ (x, y)ba+ f,, (x,y)ab+ f (x, y)b?,



where we used the chain rule again, and whence we get

(D) f) 06 ¥) = (6 y)a% + £, (x, ydba+ f, (% y)ab+ f,, (X, y)b?
= £ (0 Y)2° +( £, (6 Y)+ £, (%, y))ab+ £, (x, y)b* (45)
= f (x,y)a®+2f (x,y)ab+ f (x,y)b?,

and whence we can choose

|\/|:={M11 Mﬂ}{fxx(x’y) fxy(X’Y)}:{fxx(x,y) fxy(x,y)}

46
My, My, | | fuy) £,009) || 00y £, y) (48]

and so the sufficient condition (43) for a minimum is the usual one we’ve learned as a theorem.
(And we’ve done a lot of the work here in proving that theorem.)



