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Math 334 Midterm |
Winter 2012
section 002
Instructor: Scott Glasgow

Please do NOT write on this exam. No credit will be given for such
work. Rather write in a blue book, or on your own paper, preferably
engineering paper. Write your name, course, and section number on
the blue book, or your own pile of papers. Again, do not write this or

any other type of information on this exam.

Honor Code: After | have learned of the contents of this exam by any
means, | will not disclose to anyone any of these contents by any
means until after the exam has closed. My signature below indicates |

accept this obligation.



1. Solve the following initial value problem:

%:1+t+y+ty, y(2) =0.

Also, what is the value of this solution att =—-47? (l.e., what is y(-4) ?)

10 points
Solution

The equation separates to

dy
1+t)dt,
1+y (+)

which, with the initial data in (1.1), yields the integral statement
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which, after some work, gives

log(1+y)=log(1+y)-log(1+0) =log(1+ y’)‘; =
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E(t—2)(t+4),

2

=%(t2+2t—8)=

y(t) = exp[ (t- )(t+4)] 1

Thus y(-4) = exp(%(—4— 2)(—4+4)j—1:1—1: 0=y(2).

(1.1)

(1.2)

(1.3)

(1.4)

(1.5)



2. Prove that the following differential equation is exact and then find an expression
for its general solution.

(ny3 +3x2y* + ye)dx+(3x2y2 +4x°y° +5y* +6xy5)dy =0. (1.6)
14 points

Solution

The equation (1.6) is, by definition, exact if the left-hand side is the differential of a
(continuously differentiable) function (of two variables xandy, in some simply-

connected region of the x-y plane, etc., etc.), i.e. if there is a function (X, y) such that
dy(x,y) = (2xy3 +3x%y* + ye)dx+(3x2y2 +4x°y° +5y* + 6xy5)dy . (1.7)
But we have, by definition,
dy (X, y) =y, (X, y)dx+y, (X, y)dy, (1.8)
so that the equation (1.7) is the (potentially) over-determined system of PDE’s

v, (%, y) =2xy° +3x°y* +y°, and w, (x,y) =3x’y* +4x°y° +5y* +6xy°.  (1.9)

This over-determined pair of equations is consistent (or integrable) iff (z//x)y = ('/’y)x’ i.e.
iff
(1.10)

X

(2xy3 +3x°y* + ys)y = (3x2y2 +4x°y* +5y* +6xy5)

(1.10) holds true, so that the equation (1.6) is indeed exact, because either side of (1.10)
is 6xy> +12x°y° +6Y°.

As for developing the functiony (X, y), and then (an expression for) the general solution
0f(1.6), one notes that the equations (1.9) demand, respectively, that

w(X Y)= j(2xy3 +3x°y* + ye)dx =Xy + Xyt +xy°® + f(y),

(1.11)
and y(x,y) = j(?»xzy2 +4x°y® +5y* +6xy5)dy =x’y> + X%yt + y* + xy°® + g(X),

for some initially rather arbitrary functions f (y)and g(x). The two statements (1.11) are

compatible iff

XY Xy xy® + () =Xy + XY+ Y+ xy® +g(X) & f(y)-y® =g(x)-0, which



implies both sides of the last equation are independent of both xand y . As far as finding
the general solution of (1.6) is concerned, without loss of generality we can choose
f(y)-y° =g(x)—0=0s0 that (1.11) becomes (“in either case”)

w(%y) =Xy Y 3y + Y =y (Lxy) (X +yP). (1.12)

(1.12) is NOT the general solution to the (exact) differential equation (1.6). It is not even
a specific solution. Rather (1.12) defines a “potential (function) for the solution.” Using it
one notes that (1.6) can be written as

di (X, y):d(y3(1+xy)(x2+y2)):0, (1.13)
the general solution to which is clearly

y (1+ xy)(x2+y2):C. (1.14)

3. By using one of the estimates from Picard’s proof of the Fundamental Theorem of
First Order ODE’s, show that there exists a solution y = ¢(t) to the IVP

dy_3t

(1+y?). y(0) =0, (1.15)
dt 2

at least throughout the interval

te[-h,h]=[-11] (1.16)

Hint: If you do not remember the estimate, do the following to jog your memory.
Instead of (1.15), and following Picard, write (for some h >0 to be determined)
that

é(t) :gisz(u ¢2(s))ds, t|<h, (1.17)

and, so, deduce that

! Note that the solution of (1.15) actually persists throughout the
intervalt (—(ﬂ)lla ,(ﬂ)lla) = (—1.46,1.46) , since the solution has the formula tan (t3 / 2) , and

. . . L T
since the domain of (the relevant instance of) the tangent function ist € (—— , —j .

2 2



t t 3h

32(1+¢2(s))‘ds:gj §?(1+¢%(s))d j 1+¢%(s))ds .(1.18)

0 0

t|<h=|pt) <=

Now demand that h is the biggest number that is still small enough so that, for
some Y >0, imposing |¢(s)| <Y (foreachse [—h, h]) on the right hand side of

(1.18) certainly ensures that |¢(t)| <Y (for each t [—h,h]) on the left of (1.18).

By doing this you will get an h that depends onY , i.e. you will getanh(Y ). Now
find

h:=maxh(Y). (1.19)

Y>0

This should be the number indicated in (1.16), i.e., the result of (1.19) should be
the number 1.

10 points
Solution

Demanding |¢(s)| <Y (foreachse [—h, h]) on the right hand side of (1.18) gives there
that

[t <h=|p(0)|< js 1+4°(s))d } 1+Y?) %3(1+Y2). (1.20)

0

So now we certainly get |¢(t)| <Y (for eacht e [—h, h]) provided we choose hsmall

3
enough so that%(1+Y2) <Y, the largest such h accomplishing this being

h(Y)=(li\\((2j . (1.21)

So then we get the hindicated in (1.16) by noting that

1/3 1/3 1/3
h:=maxh(Y)=max 2Y2 = 2.12 (2] -1 (1.22)
¥>0 v>0 \ 14Y 1+1 2

We could get the maximum indicated in (1.22) by using the relevant tools from calculus.




4. Suppose we have 2 continuous solutions ¢(t)and (t), t e[~h,h]=[-11], to the
integral equation indicated in (1.17), i.e. suppose that both

#(t) = %:[sz (1+4%(s))ds, and
(1.23)

(1) zgjsz (1+y7(s))ds

foreach t e [—1,1] . Then we could note that the difference ¢(t) — (t) of these two
solutions obeys

$0 -y = [[5* (1480 -5 (L+47) Jos=> [ (#(5) -7 (9)) s
’ 0 (1.24)
= 2[5 (49 +(9)) () -w/(9)) s

and, for t e[-1,1], we could get the estimate

) —w ()] = j #(5) +y(9))(#(5) ~w(s))ds

3

- _J' s|@(s) +y ()||¢(s) —w (s)|ds

; M (1.25)
< | mas o) -y o) )
\t\ I
== j K|@(s) - (s)|ds ——K j ()~ (s)|ds
where evidently
0<K:= max 2 g(r) +y (7)< 0, (1.26)

the last inequality in (1.26) holding because we have a continuous function on the
bounded interval 7 [0,1]. So now define the new function



U(t)= j |6(s) —w(s)|ds

for each t [-1,1], and note that

U(t)>0,te[0,1],
U (0)=0,

and also then note that (1.25) can then be written as

i
U'(t)=[gt) —w (1) s%Kﬂ(ﬁ(s) —y(s)|ds =%KU (t)

for t€[0,1], i.e., we get
, 3
U (t)SEKU (t),te[0,1].

Use (1.28) and (1.30) to show that

U(t)=0,

(1.27)

(1.28)

(1.29)

(1.30)

(1.31)

for t €[0,1]and, so, deduce that ¢(t) =y (t),t [0,1], i.e., deduce that there is at most one
continuous solution to the integral equation (1.17) for t € [0,1]. (You could also show

U (t)=0for t [-1,0] by a related but different argument.)

15 points
Solution

From (1.30) we have that, for eacht €[0,1],

and then that

(1.32)

(1.33)



fort e [0,1] . But then since

3 d

e~3/2Kyy r(t)_Ee—B‘/ZKtKU ('[) :a(efslmu (t)) ’ (1.34)
(1.33)is
%(e—mu (t) <0, (1.35)

again for t €[0,1]. Together with U (0) =0 (see (1.28)), (1.35) gives, for each t €[0,1],

s=t

s=0 -

e—3/2KtU (t) — e—3/2KtU (t)_o — e—3/2KtU (t)_e—3/2K-OU (O): e—3/2KSU (S)

j‘d (e—3/2KsU (S))

t
ds < | Ods 1.36
— j (1.36)

i.e. (1.35) gives
e ¥2U (1) <0, (1.37)

or, equivalently,
U(t)<o (1.38)

for each t €[0,1]. Between (1.38) and U (t) >0 (from (1.28)), we must have U (t)=0.
But then, using (1.27), we have

d d

d t
0= 520 gt¥ (0= /PO v ()l =0 -y 1) (139

for t €[0,1], which then gives ¢(t) =y (t) for t €[0,1].

5. After atimet =0, a solution of constant concentration of 1gram solute per liter
solvent enters a (perfect) stirring tank at a constant rate of 6liters per minute. The
well-stirred mixture exits the tank at a constant rate of 4 liters per minute.
Suppose the solute takes no volume in solution. If the tank contains 10 liters of
fluid at a timet =0, write down a (self-contained) differential equation for the
time evolution of the grams of solute Q(t) accumulated in the tank at timet, one

that is valid for as long as the tank is not overflowing. Then, assuming there are



10 grams of solute in the tank at t =0, give an expression for the grams Q(t) of
solute accumulated in the tank at timet (by solving the relevant IVP).

15 points

Solution

By stoichiometric / “unit-canceling” / “chain-rule” reasoning, one has

HHRHEEREIERIE
dt - dt total - dt in dt out - dV in dt in dV out dt out
=C R -CR (1.40)

in" tin out” “out

= RinCin -R J

Q5149 _6_4
Vv Y

<|O

where the fluid tank volume V =V (t) is specified by

c(jj_\: - Rin - Rou'[ =6-4=2, V(O) :VO =10, (141)

the latter (trivial) initial value problem having the unique solution
V=V, +t(R,-R,,)=10+t-2=10+2t. (1.42)

Thus the required, “self-contained” differential equation is

d_Q = RinCin - Rout Q
dt VO +t(Rin - Rout)
4
=6-—
10+ 2t Q (1.43)
=
Q 2
®, 2 g-6
dt 5+t Q

We solve the initial value problem which is ODE (1.43) together with initial data
Q(0)=10. (1.44)

An integrating factor for the ODE (1.43) is, according to the standard theory,



10

U= expj%dt =exp(2log(5+t))

(1.45)
=(5+t)2.
Use of the integrating factor (1.45) in (1.43) gives
d((5+t)2Q) 2 dQ 2 2 2 d2(5+t)3
T:(5+t) E+(5+t) aQ:G(SH) =g (1.46)
Integration of (1.46) using relevant limits (and dummy variables) gives
(5+t) Q(t)-2-5° = (5+t) Q(t)-5°-10=
(5+1)° Q(t) - (5+0)° Q(0) = (5+5) Q(s)‘
(1.47)

O —

d ((5+s Q(s))

Jo(2(s+))

3|t

2(5+5)"| =2(5+t)’-2(5+0)’ =2(5+t)’~2.5°,

0

or, equivalently,
Q(t)=2(5+t)=10+2t. (1.48)
6. Show that the following differential equation, equation(1.49), is not exact, but can

be rendered exact by multiplication by an integrating factor that is only a function
of xoronly a function of y . Find an expression of the general solution of the

differential equation.

(2xy+3x2y2 + y“)dx+(3x2 +4x°y +5y° + 6xy3)dy =0. (1.49)

15 points

Solution

(1.49) is not exact since

W,y = (V/x)y = (2xy+3x2y2 + y“)y = 2X+6X°y +4y° (150)
= 6x+12X7y +6Yy° = (3x* +4x°y + 5y’ +6xy3)X = (wy)x =y, '



11

By theorem we know that, with an integrating factor «, (1.49) can be made exact. We
note from (1.50) that
(2xy+3x7y + y“)y — (3% +4x%y + 5y +6xy3)X = 2x+6x°y +4y° —(6x+12xy +6Y°)

=—4x—6x’y -2y’ ,(1.51)
= —2(2x+3x2y+ y3)

which divides the first term in (1.49), (which is y(2x+3x2y+ y‘°’)), the remaining factor

(—=y/2) being only a function of y . Thus we suspect the existence of an integrating
factor only depending ony . At any rate, with the use of such a factor, ODE (1.49)
becomes

(2xy +3x°Y% +y* ) u(y)dx+ (3% +4x°y + 5y’ +6xy*) u(y)dy = 0, (1.52)
and exactness demands that

0= ((2xy+3x2y2 + y“)y(y))y —((SX2 +4x°y +5y° +6xy3)y(y))X
:(2x+6x2y+4y3)y(y)+(2xy+3x2y2 + y“)y’(y)—(6x+12x2y+6y3)y(y)
==2(2x+3x%y + ¥ ) u(y) + y(2x+3x°y + ¥ ) 4 (y) (1.53)

= (2x+3x2y+ yg)(—ZIJ(Y) +yu'(y))
<=
yi'(y) =2u(y).

Thus, as suspected, there is an integrating factor depending only on y . A solution of the
last differential equation in (1.53) is given by

H(y)=y*, (1.54)
in which case (1.52) becomes

0= (2xy+3x2y2 + y4) yzdx+(3x2 +4x°y +5y° + 6xy3) y2dy (L.55)
= (2xy3 +3x°y* + yﬁ)dx+(3x2y2 +4x%y% +5y* + 6xy5)dy, '

which is the exact equation considered in problem 2. Thus the solution is the same as in
problem 2, namely
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XY+ 5y 4 xy° +y° =y (L+xy) (X +y*)=C. (1.56)

7. Find a linear, first order, ordinary differential equation with the property that
every solution y(t) of it approaches the function f (t) =1+t arbitrarily closely
ast — +oo. Note that the (too) simple equation

y(t)=f'(t)=(1+17) =2t (157)

does not work since the general solution of (1.57) is

y(t) = [2tdt=C +t*, (1.58)
giving
lim (y() - f () =tlir+rl(C +2—(1+17))=C -1, (1.59)

which is not zero for every possible choice of C.
10 points
Solution

Introduce a general solution of the form

y(t) =1+t +Ce™ (1.60)
with a > 0to get
. T 2 —at 2\\_ i —at _
lim (y(t) - f(t))—tlirﬂo(lﬂ +Ce™ —(L+t ))—tILrEOCe =0 (1.61)

for every choice of C, as demanded by the problem. Thus, to get a first order ODE with
the required property we differentiate (1.60) with respect to tand eliminate C between
(1.60) and this new result. Differentiating (1.60) gives

y'(t)=2t-aCe™, (1.62)

and elimination of C between (1.60) and (1.62) gives the required first order ODE,
namely
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y'(t) = 2t —aCe™ = 2t—a(y(t)—(1+t2)) (169
—ay(t)+a+ 2t +at®,

8. Solve the following initial value problem. State the properties of the solution as
t — +oo for all possible choices of the initial value y, .

y'(©) =—yt) +(1+t)", y(0) =y, .

(1.64)
15 points
Solution
The ODE in (1.64) can be written as
y'(t) +1y(t) = (L+1)". (1.65)
(1.65) suggests the integrating factor
u(t) =exp j 1dt = ' (1.66)
which renders the ODE (1.65) as
d
—ey({l)=
” y(t) =
ty,r t 2t d
e'y'(t)+e'y(t) = (l+t) ( 1+t)e ) e' d_ 1+t
. d
= (@) )2e (L)
= (1+1) e -2 (1+1 )+2e = (1+1) (1.67)
(1+t Y1+t )+2e

(1+1) e —2¢" (1+t)+zet)

aleglagle

o
_~ I/

—~
N
+
—
N
~—~—
CDv—v
N —

which, with the initial data specified in (1.64), integrates to
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&'y () - Yo =€'y(t) -1+ Yo =€'y(1) ~€°y(0) =€’y (s)], =
jdesy(s):j'd(l+ s?)e’ (1.68)

t

=(1+sz)eS

(1+t2)et —(1+02)e° =(1+t2)eI -1

0

or, equivalently,
y(t) =1+t*+e" (y,-1). (1.69)

Note then the differential equation in (1.64) gives a solution to problem 7, which
indicates the desired properties.

9. Carefully state the (nonlinear) existence and uniqueness theorem for a single first
order ODE.
15 points
Solution

Consider the initial value problem
y't)=f(t.y), y(ty) = Yo- (1.70)

Suppose f(t,y) and f,(t, y)are both continuous in an open rectangle

(t.t,,)x (Y. Y., ) containing the point(t,, y, ). Then there exists an h > 0such that
(1.70) has a unique, continuously differentiable solution y = ¢(t) persisting over the
tinterval (t, —h,t, +h) (potentially much smaller than the interval (t_,,t,,)).

10. Carefully state the linear existence and uniqueness theorem for a single first order
ODE. Explain in general terms how it is proven.

15 points

Solution

Consider the initial value problem

y'(t) = p(t)y +qa(t), y(t)) = Y,. (1.71)
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Suppose p(t) and q(t)are both continuous in an open interval (t_,,t,,) containing the
pointt,. Then (1.71) has a unique, continuously differentiable solution y = ¢(t) persisting
over the tinterval (t,t,,).

The theorem is proven by explicitly integrating (1.71), using an integrating factor, the
various theorems of calculus, including that the integral of a continuous function exists,
etc.



