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KEY 
 

Math 334 Midterm I 
Winter  2012 
section 002  

Instructor: Scott Glasgow 
 
 

Please do NOT write on this exam. No credit will be given for such 
work. Rather write in a blue book, or on your own paper, preferably 
engineering paper. Write your name, course, and section number on 
the blue book, or your own pile of papers. Again, do not write this or 

any other type of information on this exam. 
 

Honor Code: After I have learned of the contents of this exam by any 
means, I will not disclose to anyone any of these contents by any 
means until after the exam has closed. My signature below indicates I 
accept this obligation. 
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1. Solve the following initial value problem: 
 

 1 ,  (2) 0
dy

t y ty y
dt

     . (1.1) 

 
Also, what is the value of this solution at 4t   ? (I.e., what is ( 4)y  ?) 

 
10 points 
 
Solution 
 
The equation separates to 
 

  1 ,
1

dy
t dt

y
 


 (1.2) 

 
which, with the initial data in (1.1), yields the integral statement 
 

  
0 2

1
1

y tdy
t dt

y


  

  , (1.3) 

 
which, after some work, gives  
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 (1.4) 

 
i.e.,   
 

   1
( ) exp 2 4 1.

2
y t t t

     
 

 (1.5) 

 

Thus   1
( 4) exp 4 2 4 4 1 1 1 0 (2).

2
y y
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2. Prove that the following differential equation is exact and then find an expression 
for its general solution. 

 

    3 2 4 6 2 2 3 3 4 52 3 3 4 5 6 0xy x y y dx x y x y y xy dy       . (1.6) 

 
14 points 
 
Solution 
 
The equation (1.6) is, by definition, exact if the left-hand side is the differential of a 
(continuously differentiable) function (of two variables x and y , in some simply-
connected region of the -x y plane, etc., etc.), i.e. if there is a function ( , )x y such that 
 

    3 2 4 6 2 2 3 3 4 5( , ) 2 3 3 4 5 6d x y xy x y y dx x y x y y xy dy        . (1.7) 

 
But we have, by definition,  
 
 ( , ) ( , ) ( , ) ,x yd x y x y dx x y dy     (1.8) 

 
so that the equation (1.7) is the (potentially) over-determined system of PDE’s 
 
 3 2 4 6 2 2 3 3 4 5( , ) 2 3 ,  and ( , ) 3 4 5 6x yx y xy x y y x y x y x y y xy        . (1.9) 

 

This over-determined pair of equations is consistent (or integrable) iff    x yy x
  , i.e. 

iff 
  

    3 2 4 6 2 2 3 3 4 52 3 3 4 5 6
y x

xy x y y x y x y y xy      . (1.10) 

 
(1.10) holds true, so that the equation (1.6) is indeed exact, because either side of (1.10) 
is 2 2 3 56 12 6xy x y y  . 
 
As for developing the function ( , )x y , and then (an expression for) the general solution 
of(1.6), one notes that the equations (1.9) demand, respectively, that  
 

 
 
 

3 2 4 6 2 3 3 4 6

2 2 3 3 4 5 2 3 3 4 5 6

( , ) 2 3 ( ),  

and ( , ) 3 4 5 6 ( ),

x y xy x y y dx x y x y xy f y

x y x y x y y xy dy x y x y y xy g x





      

        




(1.11) 

 
for some initially rather arbitrary functions ( )f y and ( )g x . The two statements (1.11) are 
compatible iff 

2 3 3 4 6 2 3 3 4 5 6( ) ( )x y x y xy f y x y x y y xy g x         5( ) ( ) 0f y y g x   , which 
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implies both sides of the last equation are independent of both x and y . As far as finding 
the general solution of (1.6) is concerned, without loss of generality we can choose 

5( ) ( ) 0 0f y y g x    so that (1.11) becomes (“in either case”) 
 

   2 3 3 4 6 5 3 2 2( , ) 1x y x y x y xy y y xy x y        . (1.12) 

 
(1.12) is NOT the general solution to the (exact) differential equation (1.6). It is not even 
a specific solution. Rather (1.12) defines a “potential (function) for the solution.” Using it 
one notes that (1.6) can be written as  
 

    3 2 2( , ) 1 0d x y d y xy x y     , (1.13) 

 
the general solution to which is clearly 
 

   3 2 21y xy x y C   . (1.14) 

   
 

3. By using one of the estimates from Picard’s proof of the Fundamental Theorem of 
First Order ODE’s, show that there exists a solution ( )y t  to the IVP 

 

  
2

23
1 ,  (0) 0

2

dy t
y y

dt
   , (1.15) 

 
at least throughout the interval 
 

    , 1,1t h h    .1 (1.16) 

 
 
Hint: If you do not remember the estimate, do the following to jog your memory. 
Instead of (1.15), and following Picard, write (for some 0h   to be determined) 
that  
 

  2 2

0

3
( ) 1 ( ) ,  

2

t

t s s ds t h    , (1.17) 

 
and, so, deduce that 

                                                 
1 Note that the solution of (1.15) actually persists throughout the 

interval       1/3 1/ 3
, 1.46,1.46t     , since the solution has the formula  3tan / 2t , and 

since the domain of (the relevant instance of) the tangent function is ,
2 2

t
    

 
. 
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      2 2 2 2 2 2

0 0 0

3 3 3
 ( ) 1 ( ) 1 ( ) 1 ( )

2 2 2

t t h

t h t s s ds s s ds s s ds             .(1.18) 

 
Now demand that h is the biggest number that is still small enough so that, for 
some 0Y  ,  imposing ( )s Y   (for each  ,s h h  ) on the right hand side of 

(1.18) certainly ensures that ( )t Y  (for each  ,t h h  ) on the left of (1.18). 

By doing this you will get an h  that depends onY , i.e. you will get an  h Y . Now 

find 
 

  
0

: max
Y

h h Y


 . (1.19) 

 
This should be the number indicated in (1.16), i.e., the result of (1.19) should be 
the number 1. 

 
10 points 
 
Solution 
 
Demanding ( )s Y   (for each  ,s h h  ) on the right hand side of (1.18) gives there 

that 
 

      
3

2 2 2 2 2

0 0

3 3
 ( ) 1 ( ) 1 1

2 2 2

h h h
t h t s s ds s Y ds Y          . (1.20) 

 
So now we certainly get ( )t Y  (for each  ,t h h  ) provided we choose h small 

enough so that  
3

21
2

h
Y Y  , the largest such h accomplishing this being 

 

  
1/3

2

2

1

Y
h Y

Y
    

. (1.21) 

 
So then we get the h indicated in (1.16) by noting that  
 

  
1/3 1/3 1/3

2 20 0

2 2 1 2
: max max 1.

1 1 1 2Y Y

Y
h h Y

Y 

                    
 (1.22) 

 
We could get the maximum indicated in (1.22) by using the relevant tools from calculus. 
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4. Suppose we have 2 continuous solutions ( )t and ( )t ,    , 1,1t h h    , to the 

integral equation indicated in (1.17), i.e. suppose that both 
 

 

 

 

2 2

0

2 2

0

3
( ) 1 ( ) ,  and

2

3
( ) 1 ( )

2

t

t

t s s ds

t s s ds

 

 

 

 




 (1.23) 

 
for each  1,1t  . Then we could note that the difference ( ) ( )t t  of these two 

solutions obeys 
 

 

     

  

2 2 2 2 2 2 2

0 0

2

0

3 3
( ) ( ) 1 ( ) 1 ( ) ( ) ( )

2 2

3
( ) ( ) ( ) ( ) ,

2

t t

t

t t s s s s ds s s s ds

s s s s s ds

     

   

        

  

 


 (1.24) 

 
and, for  1,1t  , we could get the estimate 

 

 

  

  

2

0

2

0

2

0,1
0

0 0

3
( ) ( ) ( ) ( ) ( ) ( )

2

3
( ) ( ) ( ) ( )

2

3
max ( ) ( ) ( ) ( )

2

3 3
: ( ) ( ) ( ) ( )

2 2

t

t

t

t t

t t s s s s s ds

s s s s s ds

s s ds

K s s ds K s s ds



     

   

      

   



   

  

  

   







 

 (1.25) 

  
 where evidently 
 
 

 
2

0,1
0 : max ( ) ( )K


    


     , (1.26) 

 
the last inequality in (1.26) holding because we have a continuous function on the 
bounded interval  0,1  . So now define the new function 
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0

: ( ) ( )
t

U t s s ds    (1.27) 

for each  1,1t  , and note that 

 

 
   
 

0, 0,1 ,

0 0,

U t t

U

 


 (1.28) 

 
and also then note that (1.25) can then be written as  
 

    
0

3 3
( ) ( ) ( ) ( )

2 2

t

U t t t K s s ds KU t          (1.29) 

 
for  0,1t , i.e., we get 

 

      3
, 0,1 .

2
U t KU t t    (1.30) 

 
Use (1.28) and (1.30) to show that 
 
   0U t  , (1.31) 

 
for  0,1t and, so, deduce that  ( ) ( ), 0,1t t t   , i.e., deduce that there is at most one 

continuous solution to the integral equation (1.17) for  0,1t . (You could also show 

  0U t  for  1,0t  by a related but different argument.) 

   
 
15 points 
 
Solution 
 
From (1.30) we have that, for each  0,1t ,    

  

    3
0,

2
U t KU t    (1.32) 

 
and then that  
 

    3/ 2 3/ 23
0

2
Kt Kte U t e KU t     (1.33) 
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for  0,1t . But then since  

       3/ 2 3/ 2 3/ 23

2
Kt Kt Ktd

e U t e KU t e U t
dt

     , (1.34) 

 
(1.33) is 
 

   3/ 2 0Ktd
e U t

dt
  , (1.35) 

 
again for  0,1t . Together with  0 0U  (see (1.28)), (1.35) gives, for each  0,1t ,  

 

 

         
  

3/ 2 3/ 2 3/ 2 3/ 2 0 3/ 2

0

3/ 2

0 0

0 0

0

0,

s tKt Kt Kt K Ks

s

Kst t

e U t e U t e U t e U e U s

d e U s
ds ds

ds

    





     





 



(1.36) 

 
i.e. (1.35) gives  
 
  3/ 2 0,Kte U t   (1.37) 

 
or, equivalently,  
 
   0U t   (1.38) 

 
for each  0,1t . Between (1.38) and   0U t  (from  (1.28)), we must have   0.U t   

But then, using (1.27), we have   
 

  
0

0 0 ( ) ( ) ( ) ( )
td d d

U t s s ds t t
dt dt dt

          (1.39) 

 
for  0,1t , which then gives ( ) ( )t t   for  0,1t . 

 
 

5. After a time 0t  , a solution of constant concentration of 1gram solute per liter 
solvent enters a (perfect) stirring tank at a constant rate of 6liters per minute. The 
well-stirred mixture exits the tank at a constant rate of 4 liters per minute. 
Suppose the solute takes no volume in solution. If the tank contains 10 liters of 
fluid at a time 0t  , write down a (self-contained) differential equation for the 
time evolution of the grams of solute ( )Q t accumulated in the tank at time t , one 
that is valid for as long as the tank is not overflowing. Then, assuming there are 
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10 grams of solute in the tank at 0t  , give an expression for the grams ( )Q t  of 
solute accumulated in the tank at time t  (by solving the relevant IVP). 

 
15 points 
 
 
Solution 
 
By stoichiometric / “unit-canceling” / “chain-rule” reasoning, one has 
 

 

6 1 4 6 4 ,

total in out in in out out

in in out out

in in out

dQ dQ dQ dQ dQ dV dQ dV

dt dt dt dt dV dt dV dt

C R C R

Q Q Q
R C R

V V V

                              
             

 

      

 (1.40) 

 
where the fluid tank volume ( )V V t is specified by 
 

 06 4 2,  (0) 10,in out

dV
R R V V

dt
        (1.41) 

 
the latter (trivial) initial value problem having the unique solution 
 
 0 ( ) 10 2 10 2in outV V t R R t t        . (1.42) 

 
Thus the required, “self-contained” differential equation is 
 

 

0 ( )

4
6

10 2

2
6.

5

in in out
in out

dQ Q
R C R

dt V t R R

Q
t

dQ
Q

dt t

 
 

 




 


 (1.43) 

 
We solve the initial value problem which is ODE (1.43) together with initial data 
 
 (0) 10Q  . (1.44) 
 
An integrating factor for the ODE (1.43) is, according to the standard theory, 
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 2

2
exp exp 2log 5

5

5 .

dt t
t

t

   


 

  (1.45) 

 
Use of the integrating factor (1.45) in (1.43) gives 
 

 
  

       
2 3

2 2 2
5 2 52

5 5 6 5
5

d t Q d tdQ
t t Q t

dt dt t dt

 
      


. (1.46) 

 
Integration of (1.46) using relevant limits (and dummy variables) gives 
 

 

   

     

     
       

2 23 2

2 2 2

0

2 3

0 0

3 3 3 3 3

0

5 ( ) 2 5 5 ( ) 5 10

5 ( ) 5 0 (0) 5 ( )

5 ( ) 2 5

2 5 2 5 2 5 0 2 5 2 5 ,

t

t t

t

t Q t t Q t

t Q t Q s Q s

d s Q s d s

s t t

       

     

  

         

 
(1.47) 

 
or, equivalently, 
 
  ( ) 2 5 10 2Q t t t    . (1.48) 

 
 

6. Show that the following differential equation, equation(1.49), is not exact, but can 
be rendered exact by multiplication by an integrating factor that is only a function 
of x or only a function of y . Find an expression of the general solution of the 
differential equation. 

 

    2 2 4 2 3 2 32 3 3 4 5 6 0xy x y y dx x x y y xy dy       . (1.49) 

 
15 points 
 
 
Solution 
 
(1.49) is not exact since  
 

 
   

   

2 2 4 2 3

2 3 2 3 2 3

: 2 3 2 6 4

6 12 6 3 4 5 6 :

xy x y y

y yxxx

xy x y y x x y y

x x y y x x y y xy

 

 

      

        
. (1.50) 



 11

 
By theorem we know that, with an integrating factor , (1.49) can be made exact. We 
note from (1.50) that 
 

 

     

 

2 2 4 2 3 2 3 2 3 2 3

2 3

2 3

2 3 3 4 5 6 2 6 4 6 12 6

4 6 2

2 2 3

y x
xy x y y x x y y xy x x y y x x y y

x x y y

x x y y

           

   

   

,(1.51) 

 

which divides the first term in (1.49), (which is  2 32 3y x x y y  ), the remaining factor 

( / 2y ) being only a function of y . Thus we suspect the existence of an integrating 
factor only depending on y . At any rate, with the use of such a factor, ODE (1.49) 
becomes  
 

    2 2 4 2 3 2 32 3 ( ) 3 4 5 6 ( ) 0xy x y y y dx x x y y xy y dy        , (1.52) 

 
and exactness demands that  
 

 

     
     

   
  

2 2 4 2 3 2 3

2 3 2 2 4 2 3

2 3 2 3

2 3

0 2 3 ( ) 3 4 5 6 ( )

2 6 4 ( ) 2 3 ( ) 6 12 6 ( )

2 2 3 ( ) 2 3 ( )

2 3 2 ( ) ( )

( ) 2 ( ).

y x
xy x y y y x x y y xy y

x x y y y xy x y y y x x y y y

x x y y y y x x y y y

x x y y y y y

y y y

 

  

 

 

 

      

        

      

    


 

(1.53) 

 
Thus, as suspected, there is an integrating factor depending only on y . A solution of the 
last differential equation in (1.53) is given by  
 
 2( )y y  , (1.54) 
 
in which case (1.52) becomes 
 

 
   
   

2 2 4 2 2 3 2 3 2

3 2 4 6 2 2 3 3 4 5

0 2 3 3 4 5 6

2 3 3 4 5 6 ,

xy x y y y dx x x y y xy y dy

xy x y y dx x y x y y xy dy

      

      
 (1.55) 

 
which is the exact equation considered in problem 2. Thus the solution is the same as in 
problem 2, namely 
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   2 3 3 4 6 5 3 2 21x y x y xy y y xy x y C       . (1.56) 

 
 

7. Find a linear, first order, ordinary differential equation with the property that 
every solution ( )y t of it approaches the function 2( ) 1f t t  arbitrarily closely 
as t   . Note that the (too) simple equation  

 

  2( ) ( ) 1 2y t f t t t      (1.57) 

 
 does not work since the general solution of (1.57) is  
 

 2( ) 2y t tdt C t   , (1.58) 

 
 giving  
 

     2 2lim ( ) ( ) lim 1 1
t t

y t f t C t t C
 

       , (1.59) 

 
 which is not zero for every possible choice of C . 
 
10 points 
 
Solution 
 
Introduce a general solution of the form  
 
 2( ) 1 aty t t Ce    (1.60) 
 
with 0a  to get  
 

     2 2lim ( ) ( ) lim 1 1 lim 0at at

t t t
y t f t t Ce t Ce 

  
         (1.61) 

 
for every choice of C , as demanded by the problem. Thus, to get a first order ODE with 
the required property we differentiate (1.60) with respect to t and eliminate C between 
(1.60) and this new result. Differentiating (1.60) gives 
 
 ( ) 2 aty t t aCe   , (1.62) 
 
and elimination of C between (1.60) and (1.62) gives the required first order ODE, 
namely 
 



 13

 
  2

2

( ) 2 2 ( ) 1

( ) 2 .

aty t t aCe t a y t t

ay t a t at

      

    
 (1.63) 

 
 

8. Solve the following initial value problem. State the properties of the solution as 
t  for all possible choices of the initial value 0y .  

 

  2

0( ) ( ) 1 ,  (0)y t y t t y y      . (1.64) 

 
 
15 points 
 
Solution 
 
The ODE in (1.64) can be written as 
 

  2
( ) 1 ( ) 1y t y t t    . (1.65) 

 
(1.65) suggests the integrating factor  
 

 ( ) exp 1 tt dt e   , (1.66) 

 
which renders the ODE (1.65) as  
 

 

      

    

      

    
    
  

2 2 2

2

2

2

2

2

( )

( ) ( ) 1 1 1

1 2 1

1 2 1 2 1

1 2 1 2

1 2 1 2

1

t

t t t t t

t t

t t t

t t t

t t t

t

d
e y t

dt
d d

e y t e y t t e t e e t
dt dt

d
t e e t

dt
d d

t e e t e t
dt dt
d

t e e t e
dt
d

t e e t e
dt
d

t e
dt



       

   

     

    

    

 

 (1.67) 

 
which, with the initial data specified in (1.64), integrates to 
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0
0 0 0

2

0 0

2 2 2 0 2

0

( ) ( ) 1 ( ) (0) ( )

( ) 1

1 1 1 0 1 1,

tt t t s

t t
s s

t
s t t

e y t y e y t y e y t e y e y s

de y s d s e

s e t e e t e

       

 

        

   (1.68) 

 
or, equivalently,  
 
  2

0( ) 1 1ty t t e y    . (1.69) 

 
Note then the differential equation in (1.64) gives a solution to problem 7, which 
indicates the desired properties. 
 
 

9. Carefully state the (nonlinear) existence and uniqueness theorem for a single first 
order ODE. 

 
15 points 
 
Solution 
 
Consider the initial value problem 
 
 0 0( ) ( , ),             ( ) .y t f t y y t y    (1.70) 

 
Suppose ( , )f t y  and ( , )yf t y are both continuous in an open rectangle 

   1 1 1 1, ,t t y y    containing the point  0 0,t y . Then there exists an 0h  such that 

(1.70) has a unique, continuously differentiable solution ( )y t persisting over the 

t interval  0 0,t h t h  (potentially much smaller than the interval  1 1,t t  ). 

 
 

10. Carefully state the linear existence and uniqueness theorem for a single first order 
ODE. Explain in general terms how it is proven. 

 
15 points 
 
 
Solution 
 
Consider the initial value problem 
 
 0 0( ) ( ) ( ), ( ) .y t p t y q t y t y     (1.71) 
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Suppose ( )p t  and ( )q t are both continuous in an open interval  1 1,t t  containing the 

point 0t . Then (1.71) has a unique, continuously differentiable solution ( )y t persisting 

over the t interval  1 1,t t  . 

 
The theorem is proven by explicitly integrating (1.71), using an integrating factor, the 
various theorems of calculus, including that the integral of a continuous function exists, 
etc. 


