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1. Determine the largest possible ‘a priori’ lower bound for the radius of 
convergence of the power series representation of the general solution of the 
following differential equation about the point 0 2x   (i.e., determine the largest 

one knowable without solving the equation):   
 

   2
1 1 0.x x y xy y       (1.1) 

 
 
5 points 
 
Solution 
 
Equation (1.1) can be reduced to the equation 
 

 
    2 2

1 1
0

1 1 1 1
y y y

x x x
   

   
 (1.2) 

  
which has ‘singularities’ at the singularities of the coefficients of yand y , which are at 

1x i   and 0x  . In the complex plain the distance of the singularities to the 

expansion point 0 2 2 0x i     is    2 2
2 1 0 1 1 1 2       and 

2 0 2 4    , the smaller of which being 2 . Thus, even along the real axis, we 

cannot guarantee a radius of convergence beyond 2 without more information. 
 

2. Find a (particular) solution of the following differential equation by the method of 
undetermined coefficients: 

 
 ( ) : 2 0 20 12L y y y y t      . (1.3) 
  

Before ‘walking away’ from this problem, CHECK YOUR  (LASER BEAM) 
ANSWER—SEE IF YOUR PROPOSED SOLUTION ACTUALLY DOES IN 
FACT SOLVE THE ODE!!!! If it doesn’t, fix it. At least comment on what may 
have gone wrong. 

 
7 points 
 
Solution 
 
The usual explanation of the ansatz for developing a particular solution to a linear 
constant coefficient differential equation (with a RHS that is in the null space of a linear 
constant coefficient differential operator) is to first find a basis for the span of the RHS 
together with all its derivatives. Then, barring the phenomena of resonance (which is that 
one or more elements of such a basis are in the null space of the specific differential 
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operator in question, here L ), one then forms a general element of the space spanned by 
the basis, which general element constitutes the “method of undetermined coefficients 
ansatz” for a solution of the equation in question. For the problem at hand, and since the 
RHS of (1.3) is spanned by the set of functions  ,1t , whose first derivatives are both 

spanned by the set of functions    1 ,1t , so that all subsequent/higher derivatives  are 

spanned by ,1t , the relevant basis for a particular solution of (1.3) is, barring resonance, 

 ,1t . One soon finds though that there is resonance in the case of (1.3), specifically that 

1is in this nullspace, and so, while the dimensionality of the space spanned by  ,1t must, 

by theory, be enough, nevertheless the 1function must be multiplied by the minimum 
power of t  able to “boost it out of the null space” of L . One power of t suffices, but then 

the span of the set       1,1 ,t t t t t   is clearly only one dimensional, not two as is 

guaranteed to be sufficient, so that t in the original   ,1t must itself be boosted just 

enough to maintain a two dimensional span: the final set    1 1 2,1 ,t t t t t   is now 

guaranteed to span a vector space in which a solution of (1.3) exists. Thus a solution of 
(1.3) , together with relevant derivatives, is guaranteed to be of the form  
 

 

2

2

2

0

0 2

0 0 2

y At Bt

y t At B

y t t A

  

   

   

 (1.4) 

 
Weighted appropriate for the equation (1.3), the equations (1.4) are 
 

 

2

2

2

0 0 0 0

2 0 4 2

0 0 2

y t t

y t At B

y t t A

  

   

   

 (1.5) 

 
which sum to  
 

 

2

2

2

2

        0 0 0 0

          2 0 4 2

            0 0 2

4 20 5
          20 12 0 4 2 2 .

2 2 12 11

y t t

y t At B

y t t A

A A
t t At A B

A B B

  
   
   

   
      

   

. (1.6) 

 
Thus the following expresses a solution of (1.3):   
 
 2 25 11 .y At Bt t t     . (1.7) 
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3. A 125 kilogram mass stretches a spring 1/ 5  meter. If the mass is set in motion 
from the equilibrium position at 105 meters per second upward (yeah, that’s pretty 
fast—need a detonating device), and there is no damping, determine the 
displacement ( )u t of the mass above the equilibrium position at any subsequent 
time t . Use that the acceleration of gravity is 49/5 meters per second per second.  
 
Before ‘walking away’ from this problem, CHECK YOUR  (LASER BEAM) 
ANSWER—SEE IF YOUR PROPOSED SOLUTION ACTUALLY DOES IN 
FACT SOLVE THE IVP!!!! If it doesn’t, fix it. At least comment on what may 
have gone wrong. 

 
 
9 points 
 
 
Solution 
 
The relevant version of Newton’s second law is  
 
 0 125kgmu ku u ku     .  (1.8) 
 
Here we may determine the spring constant k from  
 
 2 2 2/ / 125kg49 / 5 / sec /(1/ 5 ) 125 7 kg / seck F s ma s meter meter     , (1.9) 
 
so that (1.8) is  
 
 2 2 2 20 125kg 125 7 kg / sec 0 7 / secu u u u       . (1.10) 
 
Rendering (1.10) unit-less, by measuring time in seconds, this is 
 
 20 7u u  , (1.11) 
 
the general solution to which being 
 
 cos(7 ) sin(7 )u A t B t  . (1.12) 
 
The initial data specifies that  
 

 

(0) 0 , (0) 105 7

0, 15,

u A u B

A B

   

 

 (1.13) 

 
so that the required solution to the initial value problem is  
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 cos(7 ) sin(7 ) 15sin(7 ).u A t B t t    (1.14) 
 
 

4. Find the general solution of the following Euler equation, one that is valid for 
0x  :  

 
 2 5 13 0x y xy y    . (1.15) 

 
Before ‘walking away’ from this problem, CHECK YOUR  (LASER BEAM) 
ANSWER—SEE IF YOUR PROPOSED SOLUTION ACTUALLY DOES IN 
FACT SOLVE THE ODE!!!! If it doesn’t, fix it. At least comment on what may 
have gone wrong. 

 
  
11 points 
 
Solution 
 
The differential equation (1.15) defines a linear differential operator xL , in terms of 

which (1.15) can be written [ ] 0.xL y   On a function r
ry x one finds that  

 

       22 2[ ] ( 1) 5 13 6 13 3 2r r r
x rL y r r r x r r x r x          ,  (1.16) 

 
so that complex solutions of (1.15) are clearly then 

 3 2 3 2 ln 3
3 2 cos(2 ln ) sin(2ln )i i x

iy x x e x x i x
      and 

 3 2 3 2 ln 3
3 2 cos(2ln ) sin(2 ln )i i x

iy x x e x x i x 
     . Independent complex linear 

combinations of these linearly independent complex valued solutions gives the following 
real-representation of the general solution: 
 
  3 cos(2 ln ) sin(2ln )y x A x B x  . (1.17) 

 
5. Solve the following initial value problem: 

 
 6 13 0;   (0) 1,  (0) 3.y y y y y        (1.18) 

 
Before ‘walking away’ from this problem, CHECK YOUR  (LASER BEAM) 
ANSWER—SEE IF YOUR PROPOSED SOLUTION ACTUALLY DOES IN 
FACT SOLVE THE IVP!!!! If it doesn’t, fix it. At least comment on what may 
have gone wrong. 

 
 
12 points 
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Solution 
 
This linear homogeneous differential equation is associated with the following 
characteristic (polynomial) and characteristic exponents r : 
 

 

   2 22 20 6 13 6 9 4 3 2

3 2 .

r r r r r i

r i

         


 

 (1.19) 

 
According to the usual theory, a real-representation of the general solution, and its 
corresponding first derivative, are  
 

 

 

    

3
1 2

3
1 2 1 2

cos 2 sin 2

and

3 2 cos 2 2 3 sin 2 .

t

t

y e C t C t

y e C C t C C t

 

     

 (1.20) 

 
Inserting 0t  into (1.20), and using the initial data given in (1.18), one obtains  
 

 
1

1 2

(0) 1

and

(0) 3 2 3,

y C

y C C

 

   
 (1.21) 

 
the solution to which being  1 21 and 0C C  . Thus the solution to the initial value 

problem is then  
 
 3 cos 2ty e t . (1.22) 
 

6. Given that 3
1y t is a solution of  

 
 2 5 9 0t y ty y     (1.23) 
 
 for 0t  , find a second, linearly independent solution 2y of (1.23) for 0t   by 

 making  the D’Alembert ansatz 3
2 1y vy vt  . 

 
Before ‘walking away’ from this problem, CHECK YOUR (LASER BEAM) 
ANSWER—SEE IF YOUR PROPOSED SOLUTION ACTUALLY DOES IN 
FACT SOLVE THE ODE!!!! If it doesn’t, fix it. At least comment on what may 
have gone wrong. 

 
14 points 
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Solution 
 
Using D’Alembert’s ansatz in (1.23) gives   
 
 

       
   

 

2 2 3 3 3 2 3 2 3 2 3
2 2 2

5 4 4 3 3 3

5 4 5 4 4

0 5 9 5 9 6 6 5 3 9

6 5 6 15 9

,

t y ty y t vt t vt vt t v t v t tv t v t t v vt

t v t t v t t t v

t v t v t u t u t tu u

                

      

        
 (1.24) 
 
and where we defined u v . By any one of a number of standard techniques, one finds 
that the first order homogeneous equation in (1.24) has a nontrivial solution 

1 ln .u t v v t      Thus a second, linearly independent solution is 
 
 3 3

2 ln .y vt t t   (1.25) 

 
 
 

7. Find the general solution of the following Euler equation, one that is valid for 
0x  :  

 
 2 7 16 0x y xy y    . (1.26) 

 
Before ‘walking away’ from this problem, CHECK YOUR (LASER BEAM) 
ANSWER—SEE IF YOUR PROPOSED SOLUTION ACTUALLY DOES IN 
FACT SOLVE THE ODE!!!! If it doesn’t, fix it. At least comment on what may 
have gone wrong. 

  
16 points 
 
Solution 
 
The differential equation (1.26) defines a linear differential operator xL , in terms of 

which (1.26) can be written [ ] 0.xL y   On a function r
ry x one finds that  

 

      22[ ] ( 1) 7 16 8 16 4r r r
x rL y r r r x r r x r x         ,  (1.27) 

 
so that a solution of (1.26) is clearly then 4

4y x . To find the general solution to this 

second order differential equation we need to find a second, linearly independent 
solution. Since the ansatz  r

ry x only produces solutions dependent upon 4
4y x , we 
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must use another ansatz. Fortunately the structure of (1.27), together with the fact that the 

differential operators 
d

dr
and xL commute, suggest such an alternative ansatz: applying 

d

dr
to both sides of (1.27), and using the indicated commutivity, one obtains 

 

    2 1
[ ] 4 ln 2 4r r

x r

d
L y r x x r x

dr
    , (1.28) 

 

so that 4

4
ln lnr

r r
r r

d
y x x x x

dr 


  is clearly a second, linearly independent solution of 

(1.26). Thus the general solution to this linear homogeneous equation is 
 
   4lny A B x x  . (1.29) 

 
 
 

8. Find the first two nonzero terms (if there are that many) in the series 
representation of any one of  2 linearly independent solutions of the equation 

 
 2 (1 4 ) 4 (1 3 ) 0,2x x x xy y y      (1.30) 
 
 about the point 0 0x  .  Realize (1.30) can in fact be rewritten as 

 32 2 0( 4 ) (4 12 ) .2x x x yxy y      (1.31) 
 
Before ‘walking away’ from this problem, CHECK YOUR (LASER BEAM) 
ANSWER—SEE IF YOUR PROPOSED SOLUTION ACTUALLY DOES IN 
FACT SOLVE THE ODE!!!! If it doesn’t, fix it. At least comment on what may 
have gone wrong. Note that the possibility of checking hints at something here. 

 
 
 
18 points 
 
 
Solution 
 
The point 0 0x  is a singular point, so that the required series solution is not quite a 

Taylor series: insert n r
n

n

y a x  (with the assumption that 0na  for 0n  , and that the 

sum is over the integers, and that 0 0a  )in (1.30) to obtain  
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   

   
   

   
   

3 2 1

1

1

1

2 20 ( 1)

( 1) 4

( 4 ) (4 12 )

( 1)

4 12 2

( 1) 4 1 ( 2)

4 12 1

2n r n r n r
n n n

n

n r n r
n n

n r n r n r
n n n n

n r n r
n n

n r
n

n r n r a x n r a x a x

n r n r a x n r n r a x

n r a x n r a x a x

n r n r a x n r n r a x

n

x x x

r a x n

x

r a

    

  

   

 




     

          
     

 

 

       


 



  





        

       

 
   
  

1

1

1
0

0

1

2

( 1) 4 2 4 1 ( 2) 12 1

( 1) 4 2 4 1 1

( 1) 4 2
( 1) 4 2

4 1 1

n r n r
n n n

n r
n n

n

n r
n n

n

nr

n

x a x

n r n r n r a n r n r n r a x

n r n r n r a n r n r a x

n r n r n r a
r r r a x

n r n r a

 













  
 

  

                    

             

                
   







1

n r

n

x




 


 (1.32) 
Evidently we require 
 
   20 ( 1) 4 2 3 2 2 1 2, 1.r r r r r r r r              . (1.33) 

 
Since these roots differ by an integer, according to the general theory we are only 
guaranteed that the larger of the two roots r gives a solution of the form 
 

 1

0 0

.n r n r n
n n n

n n n

y a x a x a x
 

  

 

      (1.34) 

From the last expression in (1.32) with 1r    we get that the coefficients na are 

determined by 
 

 

      

   

1

1

1

1 ( 1 1) 4 1 2 4 1 1 1 1 0,     1, 2,3,

1 4 2 0,  1, 2,3,

2
4 ,  1, 2,3, .

1

n n

n n

n n

n n n a n n a n

n n a n na n

n
a a n

n







              


    




  








(1.35) 

 
Thus we have 
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1 1 1 0

2 2 1

3 3 1 2

2

1 2
4 2 ,

1 1
2 2

4 0,
2 1
3 2

4 0 0,
3 1

0.n

a a a

a a

a a a

a










  




  



      





 (1.36) 

 
Thus the “infinite” series terminates, and we get in (1.34) that 
 

 
 1 0 1 1 1 1 1 1

0 1 0 1 0 0 0
0

0

2 2

1
2 .

n
n

n

y a x a x a x a x a a x a a x

a
x


     



        

   
 


 (1.37) 

 
which gives a (closed form) solution of (1.30). 
 
 

9. Find the general solution of the following linear but non-homogeneous 
differential equation by the method of variation of parameters. Do not use the 
(memorized) formula/theorem (involving a Wronskian), rather generate the 
relevant version of the formula afresh by using the “D’Alembert-like” ansatz that 
leads to that formula. 

 
 43 2 ty y y e     (1.38) 

Before ‘walking away’ from this problem, CHECK YOUR (LASER BEAM) 
ANSWER—SEE IF YOUR PROPOSED SOLUTION ACTUALLY DOES IN 
FACT SOLVE THE ODE!!!! If it doesn’t, fix it. At least comment on what may 
have gone wrong. 

  
 
22 points 
 
 
Solution 
 
The characteristic equation of the homogeneous version of the constant coefficient 
differential equation (1.38) is 
 
 20 3 2 ( 1)( 2)r r r r       (1.39) 
 
so that the general solution of the corresponding homogeneous equation is 
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 2t ty Ae Be  , (1.40) 
 
where A and B are independent of t . But allowing the parameters A and B to vary with 
t  in (1.40), we have also an ansatz there for the solution of the non-homogeneous 
equation (1.38): with such an ansatz one immediately has   
 

  2 22t t t ty Ae Be e A e B      . (1.41) 

 
But this ansatz is “initially consistent with A and B independent of t ” if we choose here 
that   
 
 2 0t te A e B   , (1.42) 
 
so that then (1.41) becomes  
 
 22t ty Ae Be   . (1.43) 
 
Differentiating (1.43) gives  
 

  2 24 2t t t ty Ae Be e A e B      . (1.44) 

 
Combining these derivatives with the appropriate weights (dictated by the differential 
equation) we get the ledger 
 

 

 

2

2

2 2

2 2 2

3 3 6

1 4 2 .

t t

t t

t t t t

y Ae Be

y Ae Be

y Ae Be e A e B

 

   

      

 (1.45) 

 
and from which it is clear that the differential equation demands that  
 
 2 42t t te A e B e   . (1.46) 
 
Combining this with the “consistency ansatz” (1.42) we get the (rather trivial) system of 
first order ODE’s 
 

 
2

42

0

2

t t

tt t

Ae e

B ee e

     
         

, (1.47) 

 
which implies that  
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2

4 2 46 5
3 2

3 32 2

2 2

0 0

2
,  

2 2

t t

t t t tt t
t t

t tt t t t

t t t t

e e

e e e ee e
A e B e

e ee e e e

e e e e

        . (1.48) 

 

Solutions to (1.48) include the pair
3 2

,  ,
3 2

t te e
A B    so that a solution to (1.38) is, 

according to (1.40),  
 

 
3 2

2 2 41
,

3 2 6

t t
t t t t te e

y Ae Be e e e       (1.49) 

 
and the general solution to (1.38) can be expressed as 
 

 2 4
1 2

1
,

6
t t ty c e c e e    (1.50) 

 
where 1c and 2c are (truly) constants now. 

 
 

10. Solve the initial value problem obtained from combining the differential equation 
of  problem 9 with the initial data (0) 0,  (0) 0y y  . In order that errors don’t 

“cascade”, I will tell you that 2 41

6
t t ty Ae Be e   ( A and B truly constant) is the 

general solution of the differential equation of problem 9. (So now if you just 
write down this solution to 9 without very convincing work, you will get 0 points 
on problem 9.) Thus, I am only testing if you understand the correct principles 
needed to construct the solution to the initial value problem given the general 
solution to the associated differential equation.  

 
20 points 
 
 
 
Solution 
 
From the information given we have  
 

 

1
(0) 0

6
2

(0) 0 2 ,
3

y A B

y A B

   

    
 (1.51) 
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or, equivalently, the following augmented matrix for the column vector ( , )A B , which, 
together with row reduction, is 
 

 
6 6 1 3 6 2 3 6 2 3 0 1 3 0 1

3 6 2 6 6 1 0 6 3 0 6 3 0 2 1

           
                      

    . (1.52) 

 
From (1.52) one has that  
 
 1/ 3,  1/ 2A B   . (1.53) 
 
and the solution sought is 
 

 2 4 2 41 1 1 1

6 3 2 6
t t t t t ty Ae Be e e e e      . (1.54) 


