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1.  Solve the following initial value problem in terms of the convolution integral:   
 
 16 ( );  (0) (0) 0.y y g t y y      (1.1) 
 
 
10 points 
 
Solution 
 
Laplace transformation of (1.1) gives 
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2. Find the general solution of the following system: 
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x x  (1.3) 

 
15 points 
 
Solution 
 
The general solution of (1.3) is  
 
 1 2

1 1 2 2( ) t tt c e c e   x x ξ ξ , (1.4) 

 
where the ξ ’s and  ’s are independent eigenvectors and distinct eigenvalues of the 
matrix in (1.3): 
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Thus, explicitly, (1.4) is 
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3. Solve the following IVP. Using the Laplace transform and knowing how to deal 
with piecewise defined functions in this transform should make things easier. 
What is the value of (10)y ? Do not express this value in terms of an abstract 
formula, but rather as a concrete number. To compute this value concretely, you 
will need to know that the function sin( )t is 2 periodic. 
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20 points 
 
Solution 
 
Taking the Laplace transform of (1.8) we get   
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To compute  ( )f sL we rewrite f in (1.3) as: 
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So, according to the relevant theorem, and given   2

1
( )g s

s
L when 0( )  ( )g t t u t (as 

per the table provided you), then 
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Thus, explicitly, (1.9) is 
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and we already know then that the solution is of the form 
 
  0 2( ) 3 ( ) ( ) 2 ( ) ( ) ( 2 ) ( ) ,y t h t u t h t u t h t u t        (1.13) 

 
where then we need only find ( )h t , whose Laplace transform is  
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Thus, according to the table, or memorized formulae, we have that the solution is given 
by (1.13) and by 
 

 
1 1

( ) sin(2 ) .
4 2

h t t t
   
 

 (1.15) 



 4

 
Note that for any 2t  , including 10t  , we have 
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4. Find a real-valued representation of the general solution of the following system:  
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25 points 
 
Solution 
 
The general solution of (1.16) can be expressed as  
 
 1 2

1 1 2 2( ) t tt c e c e   x x ξ ξ , (1.17) 

 
where the ξ ’s and  ’s are independent eigenvectors and distinct eigenvalues of the 
matrix in (1.16): 
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Thus, explicitly, (1.17) is 
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As per the usual theory, we can find a real-valued representation by finding the real and 
imaginary parts of either of the above complex-valued solutions: 
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whence a real-valued representation of the general solution is  
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5. Find the fundamental matrix of solutions ( )t   to the above problem that has 

the property that 
1 0
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10 points 
 
Solution 
 
A fundamental matrix of solutions ( )t   , one not necessarily having the desired 
property, can be found from the above general solution (1.22): 
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The desired fundamental matrix ( )t   can be obtained from ( )t   via  
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6. Solve the initial value problem given by the system of problem 4 and the initial 

data  
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 (Hint: rather than “reinventing the wheel”, just use the fundamental matrix of 
 problem 5.) 
 
7 points 
 
Solution 
 
Using the fundamental matrix of problem 5 we have 
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7. Calculate  
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 (Hint: use the result of problem 5). 
 
  
5 points 
 
Solution 
 
We have, from problem 5,   
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8. Find a representation of the general solution of the system 
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Solution 
 
The matrix in (1.29) has a repeated eigenvalue with only one eigenvector. Hence the 
general solution is of the form  
 
  1 2( ) t tt c e c t e    x x ξ ξ η  (1.30) 

 
whereξ is an eigenvector and η is an associated pseudo eigenvector: 
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Thus, explicitly, (1.30) is 
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9. Find the fundamental matrix of solutions ( )t   for the system of problem 8 
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Solution 
 
From (1.33) we have a fundamental matrix of solutions 
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whence the one desired is  
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10. Solve the initial value problem obtained from combining the differential equation 
of  problem 8 with the initial data  
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(Hint: do not “reinvent the wheel”, but rather use the result from problem 9.)  
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Solution 
 
From problem 9 we have   
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