
Math 343 Final KEY 
Fall 2006 

sections 002 and 003 
Instructor: Scott Glasgow 

 
Please do NOT write on this exam. It must be used multiple times by 
many students. Rather write in a blue book, or on your own paper, 

preferably engineering. 
 

Warning: check your solutions to each problem via a method 
independent of the one used to obtain your initial solution. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Multiple Choice section: 
 

1) Which of the following best describes a determinant? 
 

a. It is a function of a matrix that produces numbers. 
b. It is an object used in a formula for computing the inverse of a 

matrix. 
c. It is a measure of the independence of a matrix’s row vectors. 
d. It is a measure of the independence of a matrix’s column vectors.  
 

2) Which of the following best describes the coordinate vector of a 
given vector (with respect to a given basis of a vector space)? 

 
a. It is a list of weights needed to reconstruct the vector from the 

elements of a basis. 
b. It is a concrete/Euclidean representation of an otherwise abstract 

object. 
c. It is an object that can be used to turn abstract vector-space 

calculations into concrete matrix multiplications. 
d. It is an “address” with respect to the indicated basis, i.e. it records 

the distances and directions that should be traversed along the axes 
determined by the basis elements in order to arrive at the vector in 
question. 

 
Essay section: 
 
1. Assuming A and B are invertible matrices of the same size, prove that  

 
 ( ) 1 1 1.AB B A− − −=  (1.1) 
 
25 points 
 
Solution 
 

1 1B A− −  is the inverse of AB if and only if  
 
 ( ) ( ) ( ) ( )1 1 1 1 ,AB B A B A AB I− − − −= =  (1.2) 
 
to whit we first note that, by the associative property of matrix multiplication,  
 

 

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1

1 1 1 1

and

.

AB B A A BB A

B A AB B A A B

− − − −

− − − −

=

=

 (1.3) 

 



Then, by the definition of the inverses, in particular that an inverse is both a right and a 
left inverse, we have, respectively, that  
 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1 1 1

1 1 1 1 1 1

and

.

AB B A A BB A AIA A IA

B A AB B A A B B IB B IB

− − − − − −

− − − − − −

= = =

= = =

 (1.4) 

 
In (1.4) we have also used the associative property of matrix multiplication again. Using 
now the fact that the identity matrix is in fact the “multiplicative identity” we get   
 

 

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1

1 1 1 1

and

.

AB B A A IA AA

B A AB B IB B B

− − − −

− − − −

= =

= =

 (1.5) 

 
Finally we use again the definition of the inverses. In particular, using that an inverse is 
both a right and a left inverse, we have, respectively, that    
 

 

( ) ( )

( ) ( )

1 1 1

1 1 1

and

,

AB B A AA I

B A AB B B I

− − −

− − −

= =

= =

 (1.6) 

 
which is the required (1.2) 
 
 

2. Prove that, if the matrix A is invertible, the system A =x b has one and only one 
solution x , namely 1A−=x b . 

 
25 points 
 
Solution 
 
If the system has a solution x , then, for any such x ,we may write 
 
 A =x b  (1.7) 
 
(without implicitly lying), and then, by left application of 1A− to (1.7), as well as by the 
associative property of matrix multiplication, obtain that 
 
 ( ) ( )1 1 1 .A A A A A I− − −= = = =b x x x x  (1.8) 



In (1.8) we also used that 1A− is a left inverse of A , as well as the fact that the so-called 
identity matrix I is in fact a “multiplicative identity”. Here then we have just showed that 
if (1.7) has a solution, it’s got to be 1A−=x b . Thus we have showed that (1.7) has at 
most one solution. But our demonstration does not yet preclude their being no solution. 
To do that, we confirm that, for the only promising candidate 1A−=x b , we get 
 ( ) ( )1 1 ,A A A AA I− −= = = =x b b b b  (1.9) 
 
so that our candidate was successful. (Here we used the associative property of matrix 
multiplication, the fact that 1A− is a right inverse of A , as well as the fact that the so-
called identity matrix I is in fact a “multiplicative identity”.) Thus we have showed that 
the system has one and only one solution, namely 1A−=x b . 
 
 

3. Assume that both the matrix B and the matrix C are inverses of the matrix A . 
Show that B and C are just two aliases for the same matrix, i.e. show that in 
fact B C= . 

  
25 points 
 
 
Solution 
 
The descriptions of B and C demand that 
 
 .AB BA I AC CA= = = =  (1.10) 
 
Using the associative property of matrix multiplication in two different ways on the 
product BAC we get   
 

 
( )

( )
and

,

BAC B AC BI B

BAC BA C IC C

= = =

= = =

 (1.11) 

 
so that indeed  

 
B BAC C

B C

= =
⇒
=

 (1.12) 

 
as claimed. Note that in (1.11) we also used that a) C is a right inverse of A , b) B is a 
left inverse of A , and that c) the identity matrix acts as both a right and left multiplicative 
identity. 
 



4. Determine the standard matrix for the linear operator 3 3:T →\ \ that first rotates 
a vector counterclockwise about the y axis through an angle θ , then reflects the 
resulting vector about the xy -plane, and then projects the latter resulting vector 
orthogonally onto the xz plane.  If you do not recall the form of the standard 
matrices for these three transformations, recall the theorem (mnemonic)  

 
 [ ] [ ]2 3  T T T T= 1e e e , (1.13) 
 

where the indicated (boldface column) vectors are the standard basis elements of  
3\ . 

 
  
25 points 
 
Solution 
 
The linear transformation T can be expressed as the composition 3 2 1T T TD D , where 1T is 
the rotation, 2T is the reflection, and 3T is the projection. Thus the standard matrix [ ]T is 

the following product of the standard matrices of the other transformations:  [ ][ ][ ]3 2 1T T T . 
By considering the action of these three transformations on the standard basis elements, 
one finds that  
 

 [ ] [ ] [ ]3 2 1

1 0 0 1 0 0 cos 0 sin
0 0 0 , 0 1 0 , and 0 1 0 .
0 0 1 0 0 1 sin 0 cos

T T T
θ θ

θ θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (1.14) 

 
Thus  
 
  
 

[ ] [ ][ ][ ]3 2 1

1 0 0 1 0 0 cos 0 sin 1 0 0 cos 0 sin
0 0 0 0 1 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 1 sin 0 cos 0 0 1 sin 0 cos

cos 0 sin
0 1 0 .

sin 0 cos

T T T T
θ θ θ θ

θ θ θ θ

θ θ

θ θ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥

−⎢ ⎥⎣ ⎦
 (1.15) 
 



5. Let { }1 2, , , nS = v v v… be a basis for a vector space V . Prove that for any vector 

V∈v there exists one AND only one coordinate vector ( )1 2, , , n
nc c c ∈… \ such 

that 1 1 2 2 n nc c c= + + +v v v v… . 
 
25 points 
 
Solution 
 
By definition of basis we immediately have that for any V∈v  there exists at least one 
coordinate vector ( )1 2, , , n

nc c c ∈… \  such that 1 1 2 2 n nc c c= + + +v v v v… . As for 
uniqueness of this coordinate vector, and by way of contradiction, assume that there is 
another one, say ( )1 2, , , n

nk k k ∈… \ . Then  
 
 1 1 2 2 1 1 2 2n n n nc c c k k k= + + + = + + +v v v v v v v… …  (1.16) 
 
so that  
 

 

( ) ( ) ( )1 1 1 2 2 2

1 1 2 2

1 1 2 2

0

, , , ,

n n n

n n

n n

c k c k c k

c k c k c k

c k c k c k

− + − + + − =

⇔
− = − = = − =

⇔
= = =

v v v 0…

…

…

 (1.17) 

 
the first equivalence holding since S is independent. The last statement indicates then 
that ( ) ( )1 2 1 2, , , , , ,n nc c c k k k=… … , i.e. the “second” coordinate vector was only an alias 
for the first. 
 

6. Let x , u  and v denote elements of any vector space. Solve the equation 
+ =x u v for x , stating at each step which vector space axiom or algebraic 

property or definition you used to arrive at that step. 
 
25 points 
 
 
Solution 
 



 

( ) ( ) ( )
( )( ) ( )

( )

                     Add  to both sides of the above equation

                     Associative Axiom of Vector Addition

                     Additive Inverse Axiom 

+ =

+ + − = + − −

+ + − = + −

+ = + −

x u v
x u u v u u

x u u v u

x 0 v u

x ( )                      Additive Identity Axiom
                           Definition of subtraction

= + −

= −

v u
x v u

(1.18) 

 
7. Find the orthogonal projection of ( )6,1,5,2=u onto the subspace of 4\ spanned 

by ( )1 1,2,1,2=v , ( )2 2,3,2,1=v and ( )3 1,3,3,1=v . 
 
25 points 
 
Solution 
 
The projection u& is ( )6,1,5,2=u iff { }1 2 3, ,Span∈u v v v , otherwise it is the vector 

{ }1 2 3, ,Span∈u v v v& nearest u . Actually, in either case, we have 
 
 A=u x&  (1.19) 
 
where x is any solution of  
 
 T TA A A=x u ,1 (1.20) 
 
and where 
 

                                                 
1 The vector A=u x&  is unique even if x solving (1.20) isn’t: Let 1x and 2x both solve (1.20). Then 

1 2= −d x x satisfies TA A =d 0 , so that either ( )Nul A∈d or ( )( )TA Nul A ColA ⊥∈ =d . In the first 

case 1 2 1 2A A A− = − = =u u x x d 0& & and we are done.  In the second case ( )A ColA ⊥= ∈d 0 also 
since otherwise 

( ) ( ) ( )2 22 22 2
1 1 2 2 1 2 2 1 2 2 1

2 2 2
2 2 ,A

⊥ ⊥ ⊥

⊥ ⊥

= − = − + − = + − = + −

+ >

u u u u u u u u u u u u u

u d u

& & & & & & & &

 

so that 
2

1⊥u and 
2

2⊥u are not both least. 



 [ ]1 2 3

1 2 1
2 3 3
1 2 3
2 1 1

A

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

v v v . (1.21) 

 
We solve (1.20) by row reducing T TA A A⎡ ⎤⎣ ⎦u after calculating TA A and TA u : 

 
 

1 2 1 6
1 2 1 2 10 12 12 1 2 1 2 17

2 3 3 1
2 3 2 1 12 18 18 ,  2 3 2 1 27 ,

1 2 3 5
1 3 3 1 12 18 20 1 3 3 1 26

2 1 1 2

10 12 12 17 10 12 12 1
12 18 18 27 2 6 6
12 18 20 26 2 6 8

T T

T T

A A A

A A A

⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎣ ⎦ ⎣ ⎦
⎡ ⎤
⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

u

u ∼
7 1 3 3 5 1 3 3 5

10 10 12 12 17 0 18 18 33
9 2 6 8 9 0 0 2 1

1 3 3 5 1 3 3 5 2 6 6 10 2 6 0 13 2 0 0 1
0 6 6 11 0 6 0 14 0 3 0 7 0 3 0 7 0 3 0 7
0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1 0 0 2 1

6 0 0
0 6 0

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

∼ ∼

∼ ∼ ∼ ∼ ∼

∼
3

14 .
0 0 6 3

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥−⎣ ⎦

 (1.22) 
 
Thus 
 
  

 

1 2 1 22 11/ 3
3

2 3 3 27 9 / 21 114 .
1 2 3 16 8 / 36 6

3
2 1 1 5 5 / 6

A

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
−⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦ ⎣ ⎦ ⎣ ⎦

u x&  (1.23) 

 
8. Find the transition matrix B BP ′ from the 3\ basis ( ) ( ) ( ){ }1,0,0 , 0,1,0 , 0,0,1B = to 

the 3\ basis ( ) ( ) ( ){ }1,2,4 , 2,5,8 , 3,6,13B′ = . 
 
25 points 
 
Solution 



 
Let ( )B

v and ( )B′
v  be coordinate vectors with respect to the bases B and B′ for the 

vector v . Then, by definition of coordinate vector, 
 
 ( ) ( )B B

B B
′

′= =v v v , (1.24) 
 
where, abusing notation, B and B′here represent matrices containing the vectors of the 
bases B and B′as columns. Thus B in (1.24) is the identity matrix. According to (1.24) 
then,  
 
 ( ) ( ) ( )1 : B BB B B

B P−
′′

′= =v v v . (1.25) 
 
We calculate the inverse required in (1.25) by row reducing B I′⎡ ⎤⎣ ⎦ to 1

B BI B I P−
′′⎡ ⎤ = ⎡ ⎤⎣ ⎦⎣ ⎦ : 

 
  

 

1 2 3 1 0 0 1 2 3 1 0 0 1 2 0 13 0 3
2 5 6 0 1 0 0 1 0 2 1 0 0 1 0 2 1 0
4 8 13 0 0 1 0 0 1 4 0 1 0 0 1 4 0 1

1 0 0 17 2 3
0 1 0 2 1 0 .
0 0 1 4 0 1

B B

B I

I P ′

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎡ ⎤ = − −⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
⎡ ⎤− −
⎢ ⎥ ⎡ ⎤− = ⎣ ⎦⎢ ⎥
⎢ ⎥−⎣ ⎦

∼ ∼

∼

(1.26) 

 
9. Let A be an xn n matrix. Prove that if  

 
 A A⋅ = ⋅x y x y  (1.27) 
 
holds for every , n∈x y \ , then A is orthogonal. 
 
 
25 points 
 
Solution 
 

 
( )

( )0 .

TT T T T

T T T T T

I A A A A A A

A A I A A I

= = ⋅ = ⋅ = =

⇔

= − = −

x y x y x y x y x y x y

x y x y x y

 (1.28) 

 
Since (1.28) holds for , n∈x y \ , it holds for ( )TA A I= −x y , so that (1.28) becomes 
 



 

( )( ) ( ) ( )

( )

2
0

TT T T

T

A A I A A I A A I

A A I

= − − = −

⇔

= −

y y y

0 y

 (1.29) 

 
for every n∈y \ . Thus (1.29) holds for y chosen as each of the rows of the 
matrix TA A I− , showing that each of these rows is the zero vector and, so, showing that  

TA A I− is the zero matrix, i.e. TA A I= , which, together with A square, means that A is 
an orthogonal matrix. 
 

10. Let [ ] [ ]2 2: 0,1 0,1T P P→  be defined by  
 

 [ ]( ) ( )( ) ( )
1

0

4 6 12 6 .T x x x s s ds= − + −∫f f  (1.30) 

( [ ]2 0,1P is the vector space of polynomials with ordinary addition and 
multiplication as the vector addition and scalar multiplication.) Find a basis B of 

[ ]2 0,1P in which [ ]BT is diagonal.  
 

25 points 
 
Solution 
 
With respect to the (standard) basis { }21, ,S x x=  of [ ]2 0,1P , we have 
 

 [ ] ( )( ) ( )( ) ( )( ) ( ) ( )2

11 0
611 1 0 1 1 ,

6
0 0 0

s S SS S S
S

T T T x T x x x

⎡ ⎤−⎢ ⎥
⎢ ⎥⎡ ⎤⎛ ⎞⎡ ⎤= = − = ⎢ ⎥⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

 (1.31) 

which is not diagonal. [ ]1
s

P T P−  will be diagonal provided P is an invertible matrix of 

eigenvectors of [ ]sT . This matrix’s columns will be the coordinate vectors of elements of 

the desired basis B with respect to the basis { }21, ,S x x= , which will then readily specify 

such a basis B . Now the eigenvalues of [ ]sT  are 1,1,0 , since [ ]sT is upper triangular, and 
since these values appear on the diagonal. The associated eigenspaces are then computed 
as follows: 
 



 

[ ]( )

[ ]( )

1

0

10 0 0 0 1 1 06
1 0 0 1 0 0 0 0 , 1 ,

0 0 1 0 0 0 0 0

11 0 1/ 6 16
0 0 1 1 1 6

0 0 0 1 6

s

s

E Nul T I Nul Nul Span

E Nul T I Nul Span Span

λ

λ

=

=

⎡ ⎤−⎢ ⎥ ⎧ ⎫⎡ ⎤ ⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎪ ⎪⎜ ⎟ ⎜ ⎟⎢ ⎥= − ⋅ = = = ⎨ ⎬⎢ ⎥ ⎜ ⎟ ⎜ ⎟⎢ ⎥

⎪ ⎪⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎢ ⎥
⎣ ⎦
⎡ ⎤−⎢ ⎥ ⎧ ⎫⎛ ⎞ ⎛ ⎞
⎢ ⎥ ⎪ ⎪⎜ ⎟ ⎜= − ⋅ = = − = −⎨ ⎬⎢ ⎥ ⎜ ⎟ ⎜

⎪ ⎪⎜ ⎟ ⎜⎢ ⎥ ⎝ ⎠ ⎝ ⎠⎩ ⎭⎢ ⎥
⎣ ⎦

.
⎧ ⎫
⎪ ⎪⎟
⎨ ⎬⎟
⎪ ⎪⎟
⎩ ⎭

(1.32) 

 
Thus one of the desired bases B is, using the “abusive notation”, given by  
 

 { }2 2 2 2

1 0 1
1 0 , 1 1 , 1 6 1, ,1 6 6

0 0 6
B x x x x x x x x x

⎧ ⎫⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎡ ⎤ ⎡ ⎤ ⎡ ⎤= − = − +⎨ ⎬⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎪ ⎪⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

. (1.33) 

 
 
 
 

 
 

 


