Math 343 Midterm I1
Fall 2006
sections 002 and 003
Instructor: Scott Glasgow

Please do NOT write on this exam. No credit will be given for such
work. Rather write in a blue book, or on your own paper, preferably
engineering.



1. Let u=(x,~1,4),v=(-3,1,3x), and w =(6,—2,—4). Find two values of x for
which the set § = {u, v, w}is NOT a basis for R’.

15 points

Solution

S'is a basis for R’ iff it spans R’and is linearly independent. Both of these properties
hold iff the square matrix [u v w]is nonsingular, which holds iff det[u v w]#0. Thus
to insure that we do not get a basis it is necessary and sufficient to demand that

x -3 6
1 =2 -1 =2 -1 1
O=detfuv w]=det|-1 1 -2 =xdet[ }w(~3)det|: }+6det|: ]
' 3x 4 4 4 4 3x
4 3x —4

= X(~4+6x)+3(4 +8) + 6(-3x — 4) = 6x* —22x +12 = 2(3x> — 1 1x + 6) = 2(3x - 2)(x - 3)
=

x=2/3or3.
(1.1)

2. Determine the standard matrix for the linear operator 7 : R’ — R’ that first rotates
a vector counterclockwise about the y axis through an angle &, then reflects the

resulting vector about the xy -plane, and then projects the latter resulting vector

orthogonally onto the xz plane. If you do not recall the form of the standard
matrices for these three transformations, recall the theorem (mnemonic)

[T]z[Te, Te, Te,], (1.2)
where the indicated (boldface column) vectors are the standard basis elements of
R®.
15 points
Solution

The linear transformation 7' can be expressed as the composition 7, -7, o 7;, where T, is
the rotation, 7, is the reflection, and 7, is the projection. Thus the standard matrix [T]is
the following product of the standard matrices of the other transformations: [1][1][Z].



By considering the action of these three transformations on the standard basis elements,
one finds that ol

1 00 1 0 0 cosd 0O sind

[;]=|0 0 o,[L]=|0 1 O|and[F]=| O 1 O | (13)
0 01 0 0 -1 —-sind 0 cosé
Thus
1 0 O0||1 0 O cos&@ O sin8 1 0 Ojcos@ 0 siné
[T]1=[E)L])5]=|0 0 ofjo 1 off 0o 1 O |=|0 0 Off O 1 O
0 0 1//0 0 -1|—sind O cos@| [0 O 1| sind O —cosf
cos@ 0 sind
=0 0 0

i

sind 0 -—cos@

(1.4)

3. What is the Wronskian of the functions x*, x*, and x*? Do these functions form
a linearly independent set (in the vector space of real-valued functions of a single
real variable, with the standard addition and scalar multiplication)?
1S points
Solution

By the definition of the Wronskian we have

¥ ¥ x 1 x X 11 1 11 1
W=det|2x 3x* 4x® |=x"-xdet|2 3x 4x* |=x’-x-x’det|2 3 4 |=x°det|0 1 2
2 6x 12x° 2 6x 12x7 2 6 12 0 4 10

111 ,
=x"det|0 1 2|=2x°
0 0 2
(1.5)

Since the Wronskian is not the zero function, the set indicated is linearly
independent.



4. Let §={v,,v,,...,v, }be a basis for a vector space V" . Prove that for any vector
v €V there exists'one AND oly one coordinate vector (c,,c,,-..,c,) € R” such
that v=cv,+c,v, +...%C,V,.

15 points
Solution

By definition of basis we immediately have that for any v e}/ there exists at least one
coordinate vector (c;,c,,...,¢,) € R” suchthat v=cv, +c,v, +...+¢,v,. As for
uniqueness of this coordinate vector, and by way of contradiction, assume that there is
another one, say (k,,,,...,k,)€R". Then :

v=cVv,+e,v,+.te v, =kv, +Ev, +...+kV, (1.6)
so that

(a-k)v,+(c,-k)v, +...+(c,—k,)v,=0

the first equivalence holding since S is independent. The last statement indicates then that
(¢;,¢55-00r¢,) = (Ky ke k), 1. the “second” coordinate vector was only an alias for the
first.

5. Find the unique reduced row echelon form of the following matrix, identify its
rank, and find bases for its row and column space by using its unique reduced
row echelon form:

N -3[4\2(5)4

2|-6(9 |-1[8 |2
A= . (1.8)
2619 |-119 |7

\1/ 3 Y4 /2 \-5/-4

15 points



Solution

Since the row space is unchanged by elementary row operations, and since a basis for the
row space of a row echelon matrix is obvious (one can always be formed from the rows
containing leading ones), we should row reduce A to form such a echelon matrix R and
read off the desired basis for the row space of A directly from R . Similarly, but not
identically, one can read off a basis for the column space of R, and take note of the
location of this special set in R, using then the corresponding column vectorsin 4 asa
basis for the column space of 4. Thus for both bases we may begin by row reducing 4.
Continuing to reduced row echelon form the row reduction produces

1 3 0 -14 0 -37
0O 01 3 0 4
R (1.9)
0 0 O 1 3§
0O 0 0 0 O O
Thus a basis for the row space of A (not just R ) is the set
{(1,-3,0,-14,0,-37), (0,0,1,3,0,4),(0,0,0,0,1,5)}, (1.10)

while the first, third and fifth columns of 4 form a basis for the column space of 4 (since
the corresponding columns of R form a basis for the column space of R).

6. Find a basis for the null-space of the matrix

1 -3 0 -14 0 -37
001 3 0 4
R= (1.11)
0 0 0 1 5
000 0 0 0

15 points

Solution

Since the matrix is in reduced row echelon form, the desired basis is easily found by
considering that the various rows of R are code for certain equations (involving the
components of members of the null-space). By straightforward manipulation of those
equations one finds that



r_ - 3
x]
xz
X.
Null(R)=1| " |1x, —3x, —14x, —37x, = 0,1x; +3x, +4x, = 0,%, + 5x, = 0,x,,x,, X, €R ¢
x4
Xs
[ %6 |
[3x, +14x, +37x, ] ) 731147 [37])
X 1{{0]]0
—3x, —4x, r\ 0|3 —4L
= 9x 5x e = 3 2 2 3
X, Sk PN ol 1[0
~5x, 0[|0]||-5
L %, | lojLojL1]

(1.12)
so that a basis is apparent in the last representation.
7. Let x, u, and v denote elements of any vector space. Solve the equation

x +u=v for x, stating at each step which vector space axiom or algebraic
property or definition you used to arrive at that step.

15 points
Solution | pA
X+u=v i if -
(x+u)+(-u)=v+(-u) Add —u to both sides of the’abové équation
X+ (u + (-—u)) =v+(-u) Associative Axiom of Vector Addition .15
x+0=v+(-u) Additive Inverse Axiom -
x=v+(-u) Additive Identity Axiom
x=v-u Definition of subtraction

8. For u,v € R"prove the triangle inequality |u+ v|< |u]|+|v]. Note in your
calculation the step at which you use the Cauchy-Schwarz inequality.

13 points



Solution
||u+v“2 = (u+v)-(u+v) =ﬂu- u+2u-v+v-v< |||1||2 +2|u- v|+||‘v]|2
éMﬁﬂMMHMZ (Cauchy-Schwarz)
=(Ju]+[¥])’ (1.14)

Lo ]
Ju+vl<]ul+ v 2

(the latter since the two squared quantities are nonnegative).

9. Let u,v e R"and let those vectors be orthogonal with respect to the Euclidean

inner product. Prove the Pythagorean theorem [u +v|" = [ul +|v| . Note in your
calculation the step at which you use the vectors’ orthogonality.

13 points

Solution

||u+v|[2 :(u +v)-(u+v)¥u-u+2u-v+v-v - ||u"2 +2|1-W+||v"2
=l +2-0+|vf (Orthogonality) (1.15)

=[u + vl

1 8 2 4
A= 1 2{,u=|1|,andv=|2}|, (1.16)
1 3 3 1

compute both (4u)-vand u-(4v).

10. Given

S NN

15 points

Solution

We have



4
/|2 =29-4+21-2+10-1=168§“\:

1
e B \ (1.17)
2] ¥

7 |=2-22+1-7+3-39=168. )

39

(4u)-v=

2
7
0




