Matrix Stability Analysis

Consider the initial boundary value problem (IBVP)

Up = Uy, DEesglt>0 (1)
u(0,8) = g(t),  w(l,t)=h(t) (2)
u(z,0) = f(z) (3)

Equation (1) can be written as
w; = Lu, (4)

where L is a linear differential operator.

We have seen three different numerical schemes to approximate the solution of IBVP
(1)-(3). They are

1. Forward in time—Centered in space
Urt =rUl + (L= 20U +rUL,, i=1,...m, (5)

where r = 0 At/Axz?. This scheme is O(At)+O(Az?). The linear system that results
from (5) can be represented by

rg
0
W e PP e s (6)
,r.hTL
2. Backward in time—Centered in space
—rUM + (1 +2r) U —rUR = UR, i=1,...m (7)

This scheme is O(At) + O(Az?) The linear system that results from (7) can be
represented by

n+1

0

BTl . (8)
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3. Crank—Nicholson

—r T P L . ,

7Ui"_+11 + (14U - §Uin+4il = —iUi—l efs {1l ==Y LT < §Ui+1’ i=1...m (9)
This scheme is O(At?) + O(Ax?) The linear system that results from (9) can be
represented by .
7“/2 gn. s T/2 gn-i—lw
0
LSUtt = U™ + : : (10)

[ 7/2R™ + /2"

0.1 Definition 1: Stability of Linear Finite Difference Methods

A linear finite difference method (FDM) of the form
U™l = [, U" (11)

corresponding to an IBVP of (4) (such as (1)-(3)) is stable if there exists C > 0, independent
of the mesh spacing and the initial data, such that

U <CIU)l,  n—roo, At=0, Az—0, nAt<T (12)

0.2 Theorem 1: Equivalent Condition

The FDM (11) is stable if and only if there exists a constant C' > 0 independent of Az
and At such that

[[(LA)"]| < C, n—>o0o, At—0, Az—0, nAt<T (13)

Remark: Notice that C' may be greater than 1.

Proof.
Notice that
0% = LU & Ly Ly U%%) = LU e v JE TP
Therefore, for an arbitrary UY # 0
. - ny° o
o <cell = vl « Lol <o — aariso

(14)



0.3 Corollary 1: Practical Condition

If the discrete operator La of the FDM (11) satisfies
ILall < 1,
then the FDM (11) is stable.

Proof.
Notice that ||L%|| < ||Lal|*. Therefore, if

ILall 1= || (La)" | S || Lal" €1
The stability follows from Theorem 1.
Remark: Apply this condition to the explicit FDM FT-CS using the infinity norm.
In fect, if 7€ 1/2

IILAHOO=T+|1—2T‘I+7‘:r+1_27~+r=1

0.4 Corollary 2: More General Sufficient Condition

If there is is a ¢ > 0 independent of Az and At such that the discrete operator La of the
FDM (11) satisfies

[|Lall <14 cAt,
for At < At*, then the FDM (11) is stable.

Proof.
Notice that nAt < T and 1 + cAt < e®??, then 1 + cAt < eT/n, Therefore,

H(Za)" [ S HLall" < (14 cAt)* < e =ef = C

0.5 Definition 2: Spectral Radius
The spectral radius p(La) of the FDM matrix La is the maximum of the absolute value
of its eigenvalues. Assuming that \;, i =1,... N are the eigenvalues of L, then

p(La) = max [A;]

1<i<N



0.6 Theorem 2: Relationship Between Spectral Radius and Norm
of LA

If p(La) and ||La|| are the spectral radius and the vector-induced norm of La then,

p(La) < ||Lall
Proof.
For any eigenvector x;, it holds ||Lax;|| = ||\ix;|, for i =1,2,..., N. Therefore,
L X Lax
ad = BBl ¢ e MLy 5 p(2a) < 12

1]

1|

0.7 Corollary 3: Necessary Condition

The condition
pn(LA) = C;

for a constant C' > 0 independent of Az and At is aAecessary condition for the stability
of the FDM (11). —

Proof.

Notice that p*(La) = p((La)") < || (La)™)||- Therefore, if p*(La) is not bounded then
I| (La)™)]| is also not bounded and the FDM is not stable.

0.8 Corollary 4: A More Practical Sufficient Condition (special
matrices)

If La of the FDM (11) is symmetric or similar to a symmetric matrix, then

P(LA) S 1>
for any Az and At, is also a sufficient condition for stability in the Euclidean norm.

Proof.

If La is a symmetric matrix then the Eucledian norm ||Lalls = /p(LaL%) = p(La).
Therefore,

p(La) £1=||Lall2 £1



and the stability follows from Corollary 1.

Remark: Apply this condition to show stability of FT-CS and BT-CS FDM for IBVP

(1)-(3) with homogeneous boundary conditions.

0.9 Definition 4: Convergence

A finite difference approximation U" converges to the solution u” (the restriction of the
exact solution u(z,t,) to the mesh) on 0 < ¢ < T in a particular vector norm if

[|lu® —U"|| = 0, n — 0o, Az — 0, At — 0, Nt = T (15)

Why do we want to prove stability for FDM such as (11) ap-
proxzimating certain PDE problems modelled by (4)? The answer to

this question is found in the next theorem

0.10 Theorem 3: Lax-Equivalence Theorem

A consistent linear FDM such as (11) is convergent if and only if it is stable.

In many problems of practical interest, we would like to study stability when ¢t — oo.
To analyze stability for these problems, we need an alternative stability definition.

0.11 Definition 3: Absolute Stability

A FDM such as (11) is absolutely stable for a given mesh (of size Az and At) if
o < lU°ll,  n>0 (16)
0.12 Definition 4: Unconditional Stability

A FDM such as (11) is unconditionally stable if it is absolutely stable for all choices of
mesh spacing Az and At.
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