Matrix Stability Analysis

Consider the initial boundary value problem (IBVP)

$$u_t = \sigma u_{xx}, \qquad 0 < x < 1, t > 0 \tag{1}$$

$$u_t = \sigma u_{xx},$$
 $0 < x < 1, t > 0$ (1)
 $u(0,t) = g(t),$ $u(1,t) = h(t)$ (2)

$$u(x,0) = f(x) \tag{3}$$

Equation (1) can be written as

$$u_t = Lu, (4)$$

where L is a linear differential operator.

We have seen three different numerical schemes to approximate the solution of IBVP (1)-(3). They are

1. Forward in time-Centered in space

$$U_i^{n+1} = rU_{i-1}^n + (1-2r)U_i^n + rU_{i+1}^n, \quad i = 1, \dots m,$$
(5)

where $r = \sigma \Delta t / \Delta x^2$. This scheme is $\mathcal{O}(\Delta t) + \mathcal{O}(\Delta x^2)$. The linear system that results from (5) can be represented by

$$\mathbf{U}^{n+1} = L_{\Delta}^{F} \mathbf{U}^{n} + \begin{bmatrix} rg^{n} \\ 0 \\ \vdots \\ rh^{n} \end{bmatrix}. \tag{6}$$

2. Backward in time-Centered in space

$$-rU_{i-1}^{n+1} + (1+2r)U_i^{n+1} - rU_{i+1}^{n+1} = U_i^n, \quad i = 1, \dots m$$
(7)

This scheme is $\mathcal{O}(\Delta t) + \mathcal{O}(\Delta x^2)$ The linear system that results from (7) can be represented by

$$L_{\Delta}^{B}\mathbf{U}^{n+1} = \mathbf{U}^{n} + \begin{bmatrix} rg^{n+1} \\ 0 \\ \vdots \\ rh^{n+1} \end{bmatrix}. \tag{8}$$

3. Crank-Nicholson

$$\frac{-r}{2}U_{i-1}^{n+1} + (1+r)U_i^{n+1} - \frac{r}{2}U_{i+1}^{n+1} = \frac{r}{2}U_{i-1}^n + (1-r)U_i^n + \frac{r}{2}U_{i+1}^n, \quad i = 1, \dots m \quad (9)$$

This scheme is $\mathcal{O}(\Delta t^2) + \mathcal{O}(\Delta x^2)$ The linear system that results from (9) can be represented by

$$L_{\Delta}^{S}\mathbf{U}^{n+1} = L_{\Delta}^{G}\mathbf{U}^{n} + \begin{bmatrix} r/2 g^{n} + r/2 g^{n+1} \\ 0 \\ \vdots \\ r/2 h^{n} + r/2 h^{n+1} \end{bmatrix}.$$
 (10)

0.1 Definition 1: Stability of Linear Finite Difference Methods

A linear finite difference method (FDM) of the form

$$\mathbf{U}^{n+1} = L_{\Delta} \mathbf{U}^n \tag{11}$$

corresponding to an IBVP of (4) (such as (1)-(3)) is stable if there exists C > 0, independent of the mesh spacing and the initial data, such that

$$||\mathbf{U}^n|| \le C||\mathbf{U}^0||, \quad n \to \infty, \quad \Delta t \to 0, \quad \Delta x \to 0, \quad n\Delta t \le T$$
 (12)

0.2 Theorem 1: Equivalent Condition

The FDM (11) is stable if and only if there exists a constant C>0 independent of Δx and Δt such that

$$||(L_{\Delta})^n|| \le C,$$
 $n \to \infty, \quad \Delta t \to 0, \quad \Delta x \to 0, \quad n\Delta t \le T$ (13)

Remark: Notice that C may be greater than 1.

Proof.

Notice that

$$\mathbf{U}^{n} = L_{\Delta}\mathbf{U}^{n-1} = L_{\Delta}\left(L_{\Delta}\mathbf{U}^{n-2}\right) = L_{\Delta}^{2}\mathbf{U}^{n-2} = \dots = L_{\Delta}^{n}\mathbf{U}^{0}$$

Therefore, for an arbitrary $\mathbf{U}^0 \neq \mathbf{0}$

$$||\mathbf{U}^n|| \le C||\mathbf{U}^0|| \iff ||L_{\Delta}^n \mathbf{U}^0|| \le C||\mathbf{U}^0|| \iff \frac{||L_{\Delta}^n \mathbf{U}^0||}{||\mathbf{U}^0||} \le C \iff ||(L_{\Delta})^n|| \le C$$

$$\tag{14}$$

0.3 Corollary 1: Practical Condition

If the discrete operator L_{Δ} of the FDM (11) satisfies

$$||L_{\Delta}|| \leq 1,$$

then the FDM (11) is stable.

Proof.

Notice that $||L_{\Delta}^n|| \leq ||L_{\Delta}||^n$. Therefore, if

$$||L_{\Delta}|| \le 1 \Rightarrow ||(L_{\Delta})^n|| \le ||L_{\Delta}||^n \le 1$$

The stability follows from Theorem 1.

Remark: Apply this condition to the explicit FDM FT-CS using the infinity norm.

In fact, if $r \leq 1/2$

$$||L_{\Delta}||_{\infty} = r + |1 - 2r| + r = r + 1 - 2r + r = 1$$

0.4 Corollary 2: More General Sufficient Condition

If there is is a c > 0 independent of Δx and Δt such that the discrete operator L_{Δ} of the FDM (11) satisfies

$$||L_{\Delta}|| \le 1 + c\Delta t,$$

for $\Delta t < \Delta t^*$, then the FDM (11) is stable.

Proof.

Notice that $n\Delta t \leq T$ and $1 + c\Delta t \leq e^{c\Delta t}$, then $1 + c\Delta t \leq e^{cT/n}$. Therefore,

$$||(L_{\Delta})^n|| \le ||L_{\Delta}||^n \le (1 + c\Delta t)^n \le e^{cT} = e^{\tilde{c}} = C$$

0.5 Definition 2: Spectral Radius

The spectral radius $\rho(L_{\Delta})$ of the FDM matrix L_{Δ} is the maximum of the absolute value of its eigenvalues. Assuming that λ_i , $i=1,\ldots N$ are the eigenvalues of L_{Δ} , then

$$\rho(L_{\Delta}) = \max_{1 \le i \le N} |\lambda_i|$$

Theorem 2: Relationship Between Spectral Radius and Norm 0.6 of L_{Δ}

If $\rho(L_{\Delta})$ and $||L_{\Delta}||$ are the spectral radius and the vector-induced norm of L_{Δ} then,

$$\rho(L_{\Delta}) \leq ||L_{\Delta}||$$

Proof.

For any eigenvector \mathbf{x}_i , it holds $||L_{\Delta}\mathbf{x}_i|| = ||\lambda_i\mathbf{x}_i||$, for i = 1, 2, ..., N. Therefore,

$$|\lambda_i| = \frac{||L_{\Delta}\mathbf{x}_i||}{||\mathbf{x}_i||} \le \max_{\mathbf{x} \neq \mathbf{0}} \frac{||L_{\Delta}\mathbf{x}||}{||\mathbf{x}||} = ||L_{\Delta}|| \Rightarrow \rho(L_{\Delta}) \le ||L_{\Delta}||$$

Corollary 3: Necessary Condition

The condition

 $\rho^n(L_\Delta) \leq C,$ for a constant C > 0 independent of Δx and Δt is a necessary condition for the stability of the FDM (11).

Proof.

Notice that $\rho^n(L_\Delta) = \rho((L_\Delta)^n) \le ||(L_\Delta)^n||$. Therefore, if $\rho^n(L_\Delta)$ is not bounded then $||(L_{\Delta})^n)||$ is also not bounded and the FDM is not stable.

Corollary 4: A More Practical Sufficient Condition (special 0.8 matrices)

If L_{Δ} of the FDM (11) is symmetric or similar to a symmetric matrix, then

$$\rho(L_{\Delta}) \leq 1,$$

for any Δx and Δt , is also a sufficient condition for stability in the Euclidean norm.

Proof.

If L_{Δ} is a symmetric matrix then the Eucledian norm $||L_{\Delta}||_2 = \sqrt{\rho(L_{\Delta}L_{\Delta}^T)} = \rho(L_{\Delta})$. Therefore,

$$\rho(L_{\Delta}) \le 1 \Rightarrow ||L_{\Delta}||_2 \le 1$$

and the stability follows from Corollary 1.

Remark: Apply this condition to show stability of FT-CS and BT-CS FDM for IBVP (1)-(3) with homogeneous boundary conditions.

0.9 Definition 4: Convergence

A finite difference approximation \mathbf{U}^n converges to the solution \mathbf{u}^n (the restriction of the exact solution $u(x, t_n)$ to the mesh) on $0 < t \le T$ in a particular vector norm if

$$||\mathbf{u}^{\mathbf{n}} - \mathbf{U}^{n}|| \to 0, \quad n \to \infty, \quad \Delta x \to 0, \quad \Delta t \to 0, \quad n\Delta t \le T$$
 (15)

Why do we want to prove stability for FDM such as (11) approximating certain PDE problems modelled by (4)? The answer to this question is found in the next theorem

0.10 Theorem 3: Lax-Equivalence Theorem

A consistent linear FDM such as (11) is convergent if and only if it is stable.

In many problems of practical interest, we would like to study stability when $t \to \infty$. To analyze stability for these problems, we need an alternative stability definition.

0.11 Definition 3: Absolute Stability

A FDM such as (11) is absolutely stable for a given mesh (of size Δx and Δt) if

$$||\mathbf{U}^n|| \le ||\mathbf{U}^0||, \qquad n > 0 \tag{16}$$

0.12 Definition 4: Unconditional Stability

A FDM such as (11) is unconditionally stable if it is absolutely stable for all choices of mesh spacing Δx and Δt .

Definition— The IVP for the first-order (in twin) PDE $u_t = L \ u$ (L differential operator) is well-posed

if for any twice T >0, there is a constant C_T Such that any solution u(x,t) Satisfies $\int_{-\infty}^{\infty} |u(x,t)|^2 dx \leq C_T \int_{-\infty}^{\infty} |u(x,0)|^2 dx$ for $0 \leq t \leq T$.

Theorem.—
A Consistent finite difference Scheme

for a PDE for which the IVP is well-posed

is convergent if and only if it is stable.

Proof. (-) Stability => Convergence.

Consider the numerical scheme

\[
\begin{align*}
\begin{al

Subtracting (1) from (2) $\hat{e}^{n+1} = \hat{u}^{n+1} \hat{v}^{n+1} = L_{\Delta} (\hat{u}^{n} - \hat{v}^{n}) + \Delta t \hat{r}^{n} = L_{\Delta} \hat{e}^{n} + \Delta t \hat{r}^{n}$ $\Rightarrow \hat{e}^{n+1} = L_{\Delta} \hat{e}^{n} + \Delta t \hat{r}^{n}$ (3)

If
$$L_{\Delta}$$
 is independent of n by iterating on (3)
$$\hat{e}^{n} = L_{\Delta} \hat{e}^{n-1} + \Delta t \vec{\tau}^{n-1} = L_{\Delta} \left(L_{\Delta} \hat{e}^{n-2} + \Delta t \vec{\tau}^{n-2} \right) + \Delta t \vec{\tau}^{n-1} \\
= L_{\Delta}^{2} \hat{e}^{n-2} + \Delta t \left[L_{\Delta} \vec{\tau}^{n-2} + \vec{\tau}^{n-1} \right] = \\
= L_{\Delta}^{3} \hat{e}^{n-2} + \Delta t \left[L_{\Delta} \vec{\tau}^{n-3} + L_{\Delta} \vec{\tau}^{n-2} + \vec{\tau}^{n-1} \right] = \\
= L_{\Delta}^{n} \hat{e}^{n} + \Delta t \left[L_{\Delta}^{n} \vec{\tau}^{n} + L_{\Delta}^{n} \vec$$

Also, Using the hypothesis that the scheme is stable and the previous theorem about stability we conclude that there exist. C and Sz70 such that

if Δx , $\Delta t < \delta_2 \Rightarrow \|(L_{\Delta})^{\kappa}\| \leq C$ for all K such that $K \Delta t \leq T$.

Therefore, choosing $S=min(S_1,S_2)$, for $\Delta x, \Delta t \leq S$ (4) reduces to f(n-1)CE+CE $||\hat{e}^n|| \leq \Delta t ((n-1)GE+E)$ $||\hat{e}^n|| \leq \Delta t ((n-1)GE+CE)$ $||\Delta t \cap E|| \leq \Delta t \cap E$ $||\Delta t \cap E|| \leq \Delta t \cap E$ $||\Delta t \cap E|| \leq \Delta t \cap E$ $||\Delta t \cap E|| \leq \Delta t \cap E$

Since not=T

 $\Rightarrow \|\tilde{e}^{n}\| \leq \left\{ \begin{array}{l} TCE, & C>1 \\ TE, & C<1 \end{array} \right.$

In both coses, the scheme converges.