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116 FUNDAMENTALS OF FINITE-DIFFERENCE METHODS

where
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If we apply Eq. (4-101) to the two-dimensional (6 X 6) computational mesh shown in

Fig. 4-15; the following system of 16 linear algebraic equations must be solved at each
(n + 1) time level.
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A system of equations, like Eq: (4-102), requires substantially moie computer time to
solve than dnesc a #rids.em_ _1 p Tk
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which we substitute into (15.10) to find the amplification factor p. In this calculation, as well as
in many other calculations in the remainder of this Lecture, we will use the following formulae:

82 [Pk gth] = —4gin® <%h> [ (15.12)

55 [wmh iy 1/1} = —Agin <’_72ﬁ> [eiﬁmh eiwlh] . (15.13)

(You will be asked to confirm the validity of these formulae in a homework problem.) Substi-
tuting (15.11) into (15.10) and using (15.12) and (15.13), one finds

} h
p=1—4r <31112 %3 + sin® 72—> : (15.14)

The harmonics most prone to instability are, as for the one-dimensional Heat equation, those
with the highest spatial frequency, and for which

2 Bh _ o h

— = e =
sin 7 sin 5

For these harmonics, the stability condition |p| < 1 implies

h2
or, equivalently, k< —. (15.15)

r<
- 4

e

Thus, in order to ensure the stability of the simple explicit scheme (15.10), one has to impose a
restriction on the time step x that is twice as strong as the analogous restriction in the case of
the one-dimensional Heat equation. Therefore, the simple explicit scheme is computationally
inefficient, and our next step is, of course, to look for a computationally efficient scheme. As
the first candidate for that position. we will analyze the Crank-Nicolson scheme.

15.3 Naive generalization of Crank-Nicolson scheme for the 2D Heat
equation

Our main finding in this subsection will be that a naive generalization of the CN method (13.6)
is also computationally inefficient. The underlying analysis will allow us to formulate specific
properties that a computationally efficient scheme must possess.

The naive generalization to two dimensions of the CN scheme, (13.5) or (13.6), is

Uplt =Un + (5§+5Z)( e+ Ust), (15.16)

or, equivalently,
(1- 58250 Nont = (1+ 58+ 52) (15.17)

Following the lines of Lecture 13, one can show that the accuracy of this scheme is O(k? + h?).
Also, the von Neumann analysis vields the following expression for the error amplification

factor:
1—2r (51112 i 4 gt 3;)

N <31n2 '6 ki i 7211) ’

g (15.18)
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We will now demonstrate that scheme (15.16) / (15.17) is computationally inefficient. To
that end, we need to exhibit the explicit matrix form of that scheme. We begin by rewriting
(15.16) in the form?S:

R Y ’) (

m,l

r
n+1 n+1 k- n+1 n+1
Um—i—l,[ + Um~1,l) 9 (Um7l+1 . U )

m,l—1
; X (15.19)
(=2 ) U o+ 5 (T2 Up_1;) + 5 (O . % UTTYLL,Z—l) :
To write down Egs. (15.19) for all m and [ in a compact form, we will need the following
notations:
o Sy O s x B U
-r/2 2r -r/2 O : 0 x Uy
A= . : . : ; ; U, . (15.20)
0 . 0 —r/2 2r —r/2 Un—2,
0 ! ) 0 -r/2 2r Un—1,
and
(96)1 (90)7 + (90)7*
. (9r)2 " 0
Bi=| - for k =2,3% bi = . : (15.21)
: 0
(k) a1 (97 + (907"
Using these notations, one can recast Eq. (15.19) in a matrix form. Namely, forl =2,..., L—2
(ie. for layers with constant y and which are not adjacent to the boundaries), Eq. (15.19)
becomes:
(I—I—A)ﬁ;nf“l _ g]'[_jn—l—l .

= ~ (A (g o
gl UL = (U - AU+ 51 UG, + 5T UG +5b0, (15.22)
where I is the (M — 1) x (M — 1) identity matrix. Note that Eq. (15.22) is analogous to Eq.

(13.9), although the meanings of notation A is different in these two equations. Continuing,
for the layer with [ = 1 one obtains:

~ T = 77 = - T = r = T
(I+ AU = SIUN = 5By = (I - AU+ 5T Ul + 5B + 5

215? : (15.23)
The equation for [ = L — 1 has a similar form. Combining now all these equations into one, we
obtain:

(T + AT = (T = A)T" + B,

(15.24)
where U has been defined in (15.8). Z is the [(M —1)(L—1)] x [(M —1)(L —1)] identity matrix,
and

A=z g 0 By + B3 + by
“EF A =BT D ) ; By
A B = , . (15.25)
0 @ Bl A ~Ep by
o) O -iI A BY -+ BB,
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In (15.25), O stands for the (M — 1) x (M — 1) zero matrix; hopefully, the use of the same
character here and in the O-symbol (e.g., O(h?)) will not cause any confusion.
_Now, the [(M —1)(L — )] x [(M — 1)(L — 1)] matrix A in (15.25) is block-tridiagonal,

but not tridiagonal. Namely, it has only 5 nonzero diagonals or subdiagonals, but the outer

subdiagonals are not located next to the inner subdiagonals but separated from them by a band

" of zeros, with the band’s width being (M — 2). Thus, the total width of the central nonzero
band in matrix A is 2(M — 2) U Inverting such a matrix is not a computationally efficient
process in the sense that it will require not O(ML), but O(ML)? or O(ML)* operations. In
‘other words, the number of operations required to solve Eq. (15.25) is much greater than the
number of unknowns.?

Let us summarize what we have established about the CN method (15.17) for the 2D Heat
equation. The method: (i) has accuracy O(x* 4+ h?), (ii) is unconditionally stable, but (iii)
requires much more operations per time step than the number of unknown variables. We are
satisfied with features (i) and (ii), but not with (iii). In the remainder of this Lecture, we will
be concerned with constructing methods that do not have the deficiency stated in (iii). For

reference purposes, we will now repeat the properties that we want our “dream scheme” to
have.

In order to be considered computationally efficient, the scheme:
(i) must have accuracy O(k* + h?) (or better);

(ii) must be unconditionally stable;

(15.26)
(iii) must require the number of operations per time step
that is proportional to the number of the unknowns.

In the next subsection, we will set the ground for obtaining such schemes.

15.4 Derivation of a computationally efficient scheme

In this section, we will derive a schieme which we will use later on to obtain methods that
satisfy all the three conditions (15.26). Specifically, we pose the problem as follows: Find a
scheme that (a) reduces to the Crank-Nicolson scheme (13.6) in the case of the one-dimensional
Heat equation and (b) has the same order of truncation error, i.e. O(k* + h?); or, in other
words, satisfies property (i) of (15.26). Of course, there are many (probably, infinitely many)
such schemes. A significant contribution by computational scientists in the 1950’s was finding,
among those schemes, the ones which are unconditionally stable (property (ii)) and could be
implemented in a time-efficient mauner (property (iii)). In the remainder of this section, we

27One might have reasoned that, since A in (15.25) is block-tridiagonal, then one could solve Eq. (15.24) by
the block-Thomas algorithm. This well-known generalization of the Thomas algorithm presented in Lecture 8
assumes that the coefficients ar, b, ¢ and ay. J; in (8.18) and (8.19) are (M — 1) x (M — 1) square matrices.
Then formulae (8.21)—(8.23) of the Thomas algorithm are straightforwardly generalized by assigning the matrix
sense to all the operations in those formulae.

However, this naive idea of being able to solve (15.24) by the block-Thomas algorithm does not work. Indeed,
consider the defining equation for as in (8.21). It involves S7 ! While matrix 81 = by is tridiagonal, its inverse
By 1is full. Hence oy is also a full matrix. Then by the last equation in (8.21), all subsequent £;’s are also
full matrices. But then finding the inverse of each S in (8.21)~(8.23) would require O(M?3) operations, and
this would have to be repeated O(L) times. Thus, the total operation count in this naive approach is O(M3L),



