```
>> MainFDnonuniformNew
```

Exercise 1.5 (d) (i)

The grid consists of the points

x(1) = 0.4

x(2) = 0.5x(3) = 0.6

xb = 0.5

Finite difference stencil of the second derivative of an arbitrary smooth function u at x = xb based on the above grid points

$$(100) * u(x(1)) + (-200) * u(x(2)) + (100) * u(x(3))$$

Leading order error terms for smooth u at xb = 0.5 using n = 3 points

LTE =
$$0 *u^(n)(xb) + (1/1200) *u^(n+1)(xb) + ...$$

Application of the above finite difference to approximate the derivative $u^{\circ}(2)$ of the input function $u=e^{\circ}(x/3)$ at xb=0.5 based on the grid "xpts":

Approximation of $u^{(2)}(0.5) = 0.131274$

Exact value of $u^{(2)}(0.5) = 0.131262$

Actual Error = 1.21544e-05

Estimated Error = 1.21539e-05