Foh The area between the x-axis and the parametric curve $x=t+t^2,\ y=t-t^2,\ 0\leq t\leq 1$ is given by $\int y\,dx$ and has value _____

Fold (d)
$$\frac{x^2}{4} - \frac{y^2}{25} = 1$$
 is the equation of a/an _____

For (x) Find the vertex of the graph of $y = x^2 + 4x$.

- C. The equation $2x^2 + 3x + y^2 y = 7$ is called a _____
- If $r = f(\theta)$, $\theta \in [a, b]$ is an equation of a curve in polar coordinates, give the formula for the area enclosed by this curve.

FOH Write the equation $r = 2\cos\theta - \sin\theta$ in rectangular coordinates and simplify your answer.

(a)
$$x^2 + y^2 = 2x - y$$

(e)
$$(x+y)^2 = 2x - y$$

(b)
$$x^2 + y^2 = 2xy^2 - y$$

(i)

(c)
$$x^2 + 2y^2 = x - 2y$$

(d)
$$2x^2 + y^2 = 2x + y$$

8 Identify the equation which goes with the polar graph,

(a)
$$r = 2\cos\theta, \ \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

(e)
$$r = 1 + \sin \theta, \ \theta \in [0, 2\pi]$$

(b)
$$r = 3 + \sin(5\theta), \ \theta \in [0, 2\pi]$$

(f)
$$r = \sin(3\theta), \ \theta \in \left[0, \frac{\pi}{3}\right]$$

(c)
$$r = 1 + \cos \theta, \theta \in [0, 2\pi]$$

(g)
$$r = 1 + \cos(2\theta), \ \theta \in [0, 2\pi]$$

(d)
$$r - \frac{4}{4}$$
 $\theta \in [0.2\pi]$

- (a) 5π
- (e) 4.5π
- (b) 4π
- (f) 19π
- (c) 9π
- (g) $9\pi^2$
- (d) $\pi/4$
- (h) None of these

8. The graph of the polar equation $r = 2\cos(n\theta)$ has how many petals?

- (a) n petals if n is even, 2n petals if n is odd
- (e) n petals
- (b) n/2 petals if n is odd, n petals if n is even
- (f) n/2 petals
- (c) n petals if n is odd, 2n petals if n is even
- (g) None of these

(d) 2n petals

2) Find the area enclosed by the polar curve $r = 2 + \sin \theta$ for $\theta \in [0, 2\pi]$.

a) $\frac{5}{2}\pi$

b) $\frac{11}{3}\pi$

c) 2π

d) 4π

e) $\frac{9}{2}\pi$

f) None of the above.

3. Identify the equation which goes with the polar graph,

a) $r = 1 + 2\cos\theta$

b) $r = 1 + \cos \theta$

c) $r = 2 + \sin \theta$

d) $r = 2\sin(2\theta)$

e) $r = 2\cos(2\theta)$

f) None of the above.

For Tonsider the ellipse $x^2 + 4y^2 = 1$.

- (a) Give the foci of the ellipse.
- (b) Find the area of the ellipse.
- (c) Write the equation of an ellipse in polar form .
- (d) Write down (but do not evaluate) the integral that represents the perimeter of the above ellipse in the parametric form $x=t,y=y(t),\ -1\leq t\leq 1.$

- for (18) Given the polar curve $r = \theta^2$, $0 \le \theta \le 3/2$,
 - a sketch the curve;

find the area swept out by the curve;

c) find the arc length.

- (a) Sketch the graph of $r = e^{\theta/2}$.
- (b) Find the area inside the curve $r = e^{\theta/2}$ and outside the circle r = 1 for $0 \le \theta \le \pi$.
- (c) Find the slope of the polar curve $r = e^{\theta/2}$ at the point [1, 0].

24. The position, in feet, of a slow pitch softball at time t, in seconds, is given by the parametric equations

$$\begin{cases} x = 18\sqrt{3} \ t \\ y = -16t^2 + 18t + 4 \end{cases}$$

- (a) What is the rate of change of the height of the ball with respect to its horizontal position when it crosses the plate at t = 1.2 seconds?
- (b) Set up but do not evaluate an integral giving the arc length of the path of the ball for $0 \le t \le 1.2$.
- 13. Find the area enclosed by the polar curves $r = 2 \cos \theta$ and r = 1.

(6 points) Here is a parameterized curve called a cycloid. find the equation of the tangent line when $\theta = \pi/3$.

$$x(\theta) = \theta - \sin \theta$$
$$y(\theta) = 1 - \cos(\theta)$$