1. (80%) Evaluate the following integrals.

(a)
$$\int \frac{x^3 + x + 1}{x^2 + 1} dx$$

Answer:

(b) $\int \sin 4x \cos 5x \, dx$

Answer: _____

(c) $\int_0^{\pi/3} \tan^3 x \sec x \, dx$

Answer:

(d) $\int_0^2 x^2 \sqrt{4-x^2} \, dx$

Answer:

(e) $\int_{-1}^{3} t\sqrt{3+2t-t^2} dt$

Answer: _____

$$(f) \int \frac{2w-1}{w(w-1)^2} \, dw$$

(g)
$$\int_0^\infty \frac{\arctan x}{1+x^2} \, dx$$

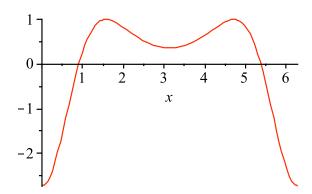
Answer: _____

(h)
$$\int \sec^3 2t \, dt$$

2. (8%) Circle the integrals that converge and put an X through the integrals that diverge. You do not need to show your work.

(a)
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$$

(b)
$$\int_0^1 \frac{dx}{\sqrt[3]{x}}$$


(a)
$$\int_{1}^{\infty} \frac{dx}{\sqrt{x}}$$
 (b) $\int_{0}^{1} \frac{dx}{\sqrt[3]{x}}$ (c) $\int_{0}^{\infty} \frac{x}{x^4 + 1} dx$ (d) $\int_{0}^{1} \frac{e^x dx}{x^2}$

$$(d) \int_0^1 \frac{e^x dx}{x^2}$$

3. (6%) A table for the function f is given. Use the table and Simpson's Rule to estimate $\int_{1}^{3} f(x) dx$.

x	1.0	1.5	2.0	2.5	3.0
f(x)	2.0	2.3	2.5	2.7	3.0

4. (6%) The error bound for the Midpoint Rule approximation M_n of $\int_a^b f(x) dx$ is given by $|E_M| \le \frac{K(b-a)^3}{24n^2}$ where $|f''(x)| \le K$. The graph for f''(x) is given below for $0 \le x \le 2\pi$. Is the error for the approximation M_{100} of $\int_0^{2\pi} f(x) dx$ less than 0.005? Justify your conclusion.

5. (bonus) Evaluate: $\int \sqrt{\frac{1+x}{1-x}} \, dx$

Answer: