Math 113-008, Exam 4 Name
Nov. 30-Dec. 3, 2007 Row
D. G. Wright

Unless indicated, each problem is worth 5%.

1. (30%) Determine whether each infinite series is absolutely convergent, conditionally convergent, or
divergent. Give reasons for your conclusion.
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2. Find the coefficient of #1992 in the MacLaurin series for x2 cos x2.
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Evaluate the sum of the geometric series 2 — = + — — -+
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Evaluate the following limit: lirr%)
Tr—

Find the the coefficient of 7 in the power series expansion for the function sin ™!

about z = 0.

x or arcsin z expanded
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Find the coefficient of 4 in the MacLaurin series for ¢® cos z.
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12. Find the fourth non-zero term for the Taylor series for sinx about z = 7/2.
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13. Find the Taylor series for e?* about z = 1.
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14. Find the Maclaurin series for
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15. Find the Maclaurin series for ze2*
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16. (bonus) If f(z) = 2% cosz, find the 100th derivative evaluated at zero; i.e., find £(199)(0).
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(a) Converges by Alternating Series Test. Does not converge absolutely by the Integral Test
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series converges conditionally.
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Converges absolutely by Comparison Test with Z — 05 -
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Diverges by Limit Comparison Test with Z w2
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Converges absolutely by Ratio Test.
Diverges by Test for Divergence or by Ratio Test.
Converges absolutely by the Root Test.
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