Unless indicated, each problem is worth 5%.

1. (30%) Determine whether each infinite series is absolutely convergent, conditionally convergent, or divergent. Give reasons for your conclusion.

(a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^n \ln n}{n^{1.01}}$$

(c)
$$\sum_{k=1}^{\infty} \frac{\sqrt{k^3}}{\sqrt{k^5} + 1}$$

(d)
$$\sum_{n=1}^{\infty} \frac{2^n n!}{5 \cdot 8 \cdot 11 \cdot \dots \cdot (3n+2)}$$

(e)
$$\sum_{n=1}^{\infty} \frac{n^n}{n!}$$

(f)
$$\sum_{k=1}^{\infty} \left(\frac{k^2 + 1}{2k^2 + 1} \right)^{2k}$$

- 2. Find the coefficient of x^{1002} in the MacLaurin series for $x^2 \cos x^2$.

- (a) $\frac{-1}{499!}$ (b) $\frac{-1}{500!}$ (c) $\frac{-1}{999!}$ (d) $\frac{-1}{1000!}$ (e) $\frac{1}{499!}$ (f) $\frac{1}{500!}$ (g) $\frac{1}{999!}$ (h) $\frac{1}{1000!}$

3.	3. Evaluate the sum of the geometric series $2 - \frac{1}{3} + \frac{1}{18} - \cdots$							
	(a) $\frac{12}{7}$	(b) $\frac{12}{5}$	(c) $\frac{3}{2}$	(d) $\frac{3}{4}$	(e) $\frac{1}{6}$	(f) $-\frac{1}{6}$	(g) $\frac{5}{6}$	(h) 2
4.	Find the sun	$ m \sum_{k=0}^{\infty} \frac{2}{k^2 + 4k} $	$\overline{z+3}$					
	(a) 1	(b) 2	(c) 3	(d) $\frac{1}{2}$	(e) $\frac{3}{2}$	(f) $\frac{5}{2}$	(g) $\frac{7}{2}$	(h) \sqrt{e}
5.	Evaluate the	e sum. $1+2x$	$x + 3x^2 + 4x^3$	$+\cdots = \sum_{n=0}^{\infty} (n$	$+1)x^n$			
	(a) $\frac{1}{1-x}$	(b) $\frac{x}{1-x}$	(c) $\frac{1}{(1-x)^2}$	$(d) \frac{x}{(1-x)^2}$	(e) $\frac{1}{(1-x)^3}$	(f) $\frac{2}{(1-x)^3}$	(g) $\frac{x}{(1-x)^3}$	(h) $\frac{2x}{(1-x)^3}$
6.	Evaluate the	e sum. $x^4 - \frac{x}{2}$	$\frac{x^6}{2!} + \frac{x^8}{4!} - \frac{x^{10}}{6!}$	$\frac{1}{k} + \dots = \sum_{k=2}^{\infty} \frac{1}{k}$	$\frac{(-1)^k x^{2k}}{(2k-4)!}$			
	(a) $x^2 \cos x$	(b) x^4 (c)	$\cos x$ (c)	$x^4 \cos x^2$	(d) $x^3 \sin x$			
7.	Evaluate the	e following lin	nit: $\lim_{x \to 0} \frac{3\tan}{x}$	$\frac{-1}{x^5} \frac{x - 3x + x}{x^5}$	3			
	(a) 3	(b) -3	(c) $\frac{1}{3}$	(d) $-\frac{1}{3}$	(e) $\frac{3}{5}$	$(f) -\frac{3}{5}$	(g) $\frac{1}{4}$	(h) $-\frac{1}{4}$
8.	Find the the coefficient of x^7 in the power series expansion for the function $\sin^{-1} x$ or $\arcsin x$ expanded about $x = 0$.							
	(a) 0	(b) 1	(c)	$\frac{5}{16}$	(d) $\frac{5}{112}$	(e) $\frac{15}{11}$	$\frac{5}{2}$	
9.	Find the radius of convergence. $\sum_{n=1}^{\infty} \frac{(-1)^n n^3 x^n}{2^n}$							
	(a) $\frac{1}{2}$	(b) $\frac{1}{\sqrt{2}}$	(c)	2	(d) $\sqrt{2}$			
10.	Find the rad	ius of conver	gence. $\sum_{n=1}^{\infty} \frac{x^2}{n4}$	$\frac{n}{n}$				
	a) $\frac{1}{2}$	(b) $\frac{1}{\sqrt{2}}$	(c)	2	(d) $\sqrt{2}$			
11.	Find the coe	efficient of x^4	in the MacLa	urin series for	$r e^{x^2} \cos x$.			
	(a) 0	(b) $\frac{1}{6}$	(c)	$-\frac{1}{6}$	(d) $\frac{1}{24}$	(e) $-\frac{1}{2}$	$\frac{1}{24}$	

12. Find the fourth non-zero term for the Taylor series for $\sin x$ about $x = \pi/2$.

(a)
$$\frac{(x-\pi/2)^6}{6!}$$

(b)
$$-\frac{(x-\pi/2)^6}{6!}$$

(c)
$$\frac{(x-\pi/2)^8}{8!}$$

(d)
$$-\frac{(x-\pi/2)^8}{8!}$$

13. Find the Taylor series for e^{2x} about x = 1.

(a)
$$\sum_{n=0}^{\infty} \frac{e^2(x-1)^n}{2^n n!}$$

(b)
$$\sum_{n=0}^{\infty} \frac{2^n e^2 (x-1)^n}{n!}$$

(c)
$$\sum_{n=0}^{\infty} \frac{2^n (x-1)^n}{e^2 n!}$$

(d)
$$\sum_{n=0}^{\infty} \frac{e^2(x+1)^n}{2^n n!}$$

(e)
$$\sum_{n=0}^{\infty} \frac{2^n e^2 (x+1)^n}{n!}$$

(f)
$$\sum_{n=0}^{\infty} \frac{2^n (x+1)^n}{e^2 n!}$$

14. Find the Maclaurin series for $\frac{1}{x^2-1}$.

(a)
$$1 + x^2 + x^4 + x^6 + \cdots$$

(b)
$$-1 - x^2 - x^4 - x^6 + \cdots$$

(c)
$$1 - x^2 + x^4 - x^6 + \cdots$$

(d)
$$-1 + x^2 - x^4 + x^6 + \cdots$$

15. Find the Maclaurin series for xe^{-2x}

(a)
$$x - 2x^2 + \frac{2^2x^3}{2!} - \frac{2^3x^4}{3!} + \cdots$$

(b)
$$x + 2x^2 + \frac{2^2x^3}{2!} + \frac{2^3x^4}{3!} + \cdots$$

(c)
$$x^2 - 2x^3 + \frac{2^2x^4}{2!} - \frac{2^3x^5}{3!} + \cdots$$

(d)
$$2x - 2^2x^2 + \frac{2^3x^3}{2!} - \frac{2^4x^4}{3!} + \cdots$$

16. (bonus) If $f(x) = x^2 \cos x$, find the 100th derivative evaluated at zero; i.e., find $f^{(100)}(0)$.

- 1. (a) Converges by Alternating Series Test. Does not converge absolutely by the Integral Test. So the series converges conditionally.
 - (b) Converges absolutely by Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n^{1.005}}$.

$$\frac{\ln n}{n^{1.01}} = \frac{\ln n}{n^{.005}} \frac{1}{n^{1.005}} < \frac{1}{n^{1.005}} \text{ for large } n.$$

- (c) Diverges by Limit Comparison Test with $\sum_{k=1}^{\infty} \frac{k^{3/2}}{k^{5/2}} = \sum_{k=1}^{\infty} \frac{1}{k}$
- (d) Converges absolutely by Ratio Test.
- (e) Diverges by Test for Divergence or by Ratio Test.
- (f) Converges absolutely by the Root Test.
- 2. (f)
- 3. (a)
- 4. (e)
- 5. (c)
- 6. (b)
- 7. (e)
- 8. (d)
- 9. (c)
- 10. (c)
- 11. (d)
- 12. (b)
- 13. (b)
- 14. (d)
- 15. (a)
- 16. (bonus) -9900